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Chapter 1

INTRODUCTION

1.1 Literature Survey

A Review of existing analytical models applicable to nonlinear response of reinforced con-
crete frame is introduced. Description of material nonlinearity in frame elements can be classi-
fied into two main groups: lumped plasticity and distributed plasticity. In the lumped plasticity
model, a frame element is made of two zero length nonlinear rotational spring elements and
an elastic beam-column element connecting them. The nonlinear material behavior of a frame
element is characterized by a moment-rotation relation. Owing to the simplicity of the formu-
lation, the lumped plasticity model is widely used when the computational cost of the analysis
is high such as nonlinear time-history analysis of large structures. On the other hand, the main
advantage of the distributed plasticity model is that material nonlinearity of the element can
develop anywhere along the element and it is thus widely used for more accurate estimation of
the nonlinear structural response.

The distributed plasticity model that subdivides the cross section of the member into fibers
is also presented in details because of its promising performance and relevance to the frame
element.

1.1.1 Plasticity Models

1.1.1.1 Lumped Plasticity Models

Under seismic excitation the inelastic behavior of frame members often concentrates at the
end of girders and columns. Hence, an early approach to modeling this behavior was to use
parallel or series model as shown in Fig. [l

The earliest element with parallel component elements, shown in Fig. [[LTl(a), allows for a
bilinear moment-rotation relation (Clough and Johnston 1966). The member consists of two
parallel component elements: one elastic component element for yielding and the other elasto-
plastic component element to capture strain-hardening. The stiffness matrix of the member is
then assumed to be the sum of the two stiffnesses. This model was generalized to multi-linear
monotonic behavior allowing for the effect of cracking in reinforced concrete (Takizawa 1976).

The series model, shown in Fig. [L.I(b) (Giberson 1967), consists of a linear elastic com-
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Nonlinear rotational spring component
M, P M.,
~——__—C,
Elasto-plastic component Fixed inflection point Elastic component
I‘l L2
) : ]
Elastic component L.
(a) Parallel model (b) Series model
(Clough and Johnston 1967) (Giberson 1967)

Fig. 1.1 Simple lumped plasticity models (Clough and Benuska 1967, Giberson 1967)

ponent and two equivalent nonlinear rotational spring components attached at the end of the
element. The inelastic deformations are lumped into the end springs. This model is more
adaptable than the original Clough and Johnston model, since it can describe more complex
hysteretic behavior through the selection of appropriate moment-rotation relations for the end
springs.

Several lumped plasticity constitutive models have been proposed, Fig. Such models
may include cyclic stiffness degradation in flexure and shear (Clough and Benuska 1967, Takeda,
Sozen and Nielsen 1970, Brancaleoni, Ciampi and Antonio 1983), pinching under cyclic (Banon,
Biggs and Irvine 1981, Brancaleoni et al. 1983), and fixed end rotations at the frame joint
interface due to bar pull-out (Otani 1974, Filippou and Issa 1988). Usually, axial-flexural
coupling is neglected. Nonlinear rate constitutive representations have also been generalized
from the basic endochronic theory formulation (Ozdemir 1981) to provide continuous hysteretic
relations for the nonlinear springs. An extensive discussion of the mathematical functions that
are appropriate for such models is given by Iwan (1978). A critical issue for these models is the
selection of parameters which can capture the experimental hysteretic behavior of reinforced
concrete. Two basic problems are encountered: (a) the model parameters depend not only
on the section characteristics but also on the load and deformation history, thus limiting the
generality of the approach, and (b) a consistent and rational method for the selection of model
parameters requires special algorithms for ensuring a least squares fit between analytical results
and experimental data. Such an algorithm was first proposed by Ciampi and Nicoletti (1986) in
a formal system identification method for the selection of parameters to describe the moment-
curvature relation proposed by Brancaleoni et al. (1983).

The dependence of flexural strength on the axial force under uniaxial and biaxial flexure
has been explicitly included in the modeling of frames and structural walls. In most lumped
plasticity models the axial force-bending moment interaction is described by a yield surface for
the stress resultants and an associated flow rule according to the tenets of classical plasticity
theory (Prager and Hodge 1951). The response is assumed to be linear for stress states that
fall within the yield surface in which case the flexural and axial stiffness of the member are
uncoupled and independent of the element nodal forces. With the introduction of multiple yield
and forcing surfaces and corresponding hardening rules multi-linear constitutive representations
that include cracking and cyclic stiffness degradation are possible for the springs (Takayanagi
and Schnobrich 1979).

12
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Fig. 1.2 Consititutive models for nonlinear springs in terms of moments and curvatures

13



A lumped plasticity model is a simplification of the actual behavior that usually involves the
gradual spread of inelastic deformations into the member as a function of loading history. This
modeling deficiency was recognized in several correlation studies, particularly, those related to
large resisting elements of flexural wall-frame structures (Charney and Bertero 1982, Bertero,
Aktan, Charney and Sause 1984). Yet the basic advantage of the lumped model remains its
simplicity that reduces storage requirements and computational cost and improves the numerical
stability of the computations which may no longer be an issue because of improvement in
computing technology. Most lumped plasticity models, however, oversimplify certain important
aspects of the hysteretic behavior of structures and are, therefore, limited in applicability. One
such limitation derives from restrictive a priori assumptions for the determination of the spring
parameters. Parametric and theoretical studies of girders under monotonic loading demonstrate
a strong dependence between model parameters and the imposed loading pattern and level
of inelastic deformation (Anagnostopoulos 1981). Neither factor is likely to remain constant
during the dynamic response. The problem is further accentuated by the fluctuation of the
axial forces in columns. Because of this history dependence, damage predictions at the global,
but also particularly at the local level may be grossly inaccurate. Such information can only be
obtained with more refined models capable of describing the hysteretic behavior of the section
as a function of axial force. Another limitation of most lumped plasticity models proposed is
their inability to describe adequately the deformation softening behavior of reinforced concrete.
Such deformation softening can be observed as the reduction in lateral resistance of an axially
loaded cantilever column under monotonically increasing lateral tip displacement. Again more
advanced models are needed in this case.

Degrading Inelastic element for reinforced concredenfs under biaxial and axial lo

Inelastic
— element
Elastic r Spring
T element element
A o
- v
(a) Member in frame (b) Member model (c) Inelasticredat

Fig. 1.3 Lai’s model (Lai et al. 1984)

The generalization of the nonlinearity theory concepts to stress and strain resultant vari-
ables due to moment-rotation or axial force-deformation of reinforced concrete column, such
as perfectly plasticity, limits the applicability of these models to well detailed members with
large inelastic deformation capacity at the critical regions (Prager and Hodge 1951). For a re-
inforced concrete column section, the yield surface of the stress resultants is actually a function
of a reference strain that couples the corresponding displacement components. This contradicts
classical nonlinearity theory which does not account for deformation softening and assumes that
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the section deformability is unlimited.

To overcome some of the limitations of classical nonlinearity theory in the description of
the interaction between axial force and bending moments, a fiber hinge model that consists
of a linear elastic element extending over the entire length of the reinforced concrete and has
one inelastic element at each end, as shown in Fig. [3] is proposed by Lai et al. (1984).
Each inelastic element is made of one inelastic spring at each section corner that represents
the longitudinal reinforcing steel and central concrete spring that is effective in compression
only. Discretization of these springs at the end sections can simulate the axial force-biaxial
moment interaction in reinforced concrete in a more rational way than is possible by classical
nonlinearity theory. In Fig. [L3] the force deformation relation for the effective steel springs
follows Takeda’s model (Takeda et al. 1970), but the parameters that define the envelope are
established from equilibrium considerations.

1.1.1.2 Distributed Plasticity Models

A more accurate model for the inelastic behavior of frame elements is possible with dis-
tributed plasticity models. In contrast to lumped plasticity models, material nonlinearity can
now occur at any element section and the element behavior is derived by weighted integration
of the section response. In practice, since the element integrals are evaluated numerically, only
the behaviors of selected sections at the integration points by Gauss-Lobatto or Gauss-Legendre
quadrature rule are monitored. Either the element deformations or the element internal forces
are the primary unknowns of the model and these are obtained from suitable interpolation func-
tions of the global element displacements or forces, respectively. Discrete cracks are represented
as "smeared” over a finite length rather than treated explicitly. The constitutive behavior of the
cross section is either formulated in accordance with classical plasticity theory in terms of stress
and strain resultants or is explicitly derived by discretization of the cross section into fibers, as
is the case in the spread plasticity fiber models. A common assumption of these models is that
plane sections remain plane (Bernoulli beam theory), such that the strains vary linearly along
the cross section.

Earlier frame models neglected the coupling between axial force and bending moment and,
typically, consisted of two cantilever elements that are connected at the fixed point of contra-
flexure of the member, as shown in Fig. [[4l Independent hysteresis rules, the end moment-free
end displacement and the end moment-free end rotation relations, are used for the derivation
of the stiffness of the two cantilever elements. To overcome some of the numerical difficulties
in the element formulations by independent hysteresis rules, Otani (1974) assumed that the
inelastic deformations are lumped in two equivalent springs at the ends of the member, thus
sacrificing the generality of the model. The global behavior of Otani (1974)’s model is derived
by integration of the curvatures along the two cantilever components. The main limitation of
this and similar models is the assumption of a fixed point of contra-flexure in the element.

A zone of inelastic deformations gradually spreads from the ends of frame element into the
element as a function of loading history (Soleimani, Popov and Bertero 1979), while the rest
of the frame element remains elastic. The fixed-end rotations at the ends of frame element are
modeled through point hinges inserted at the ends of the element. These are related to the
curvature at the corresponding end section through an “effective length” factor which remains
constant during the entire response history.

In a model developed by Meyer, Roufaiel and Arzoumanidis (1983), the flexibility coefficients
of the model are identical to those proposed by Soleimani et al. (1979), but the way of calculation
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I.P. : Inflection Point

(a) Moment Distribution

1.P.
Mz, ( ) M,

(b) Element Deformation
Inelastic spring
Mz,
tand,; Mz, =0, M;,)

~ V(M)
Uz;(Mu)t vtz tangzl (MZ1) _% Vi NZl)

0ZI(M21) :VYl(le)

|_e =1 V,;(M,,): Displacement due to Mome

6,,(M,,): Rotation due to Moment

(c) Equivalent inelastic rotational springs

Fig. 1.4 Otani’s model (Otani 1974)

the stiffness of the plastic zone during reloading is slightly different. Meyer et al. (1983) used
Takeda’s model (Takeda et al. 1970) to describe the hysteretic moment-curvature relation not
to consider fixed-end rotations.

The original model was later extended to include the effect of shear and axial forces on the
flexural hysteretic behavior based on a set of empirical rules (Roufaiel and Meyer 1987) without
explaining the variation of axial forces due to overturning moments.

Darvall and Mendis (1985) proposed a similar but simpler model with end inelastic defor-
mations defined through a trilinear moment-curvature relation. Once formed, the end hinges
may remain perfectly plastic or exhibit plastic softening or hardening. Perfectly plastic hinges
are concentrated at a point, while softening and hardening hinges have a user defined fixed
length that is normally assumed to range from 0.75d to d where d is the effective depth of the
cross section.

Takayanagi and Schnobrich (1979) proposed to divide the element into a finite number
of short longitudinal elements, each represented by a nonlinear rotational spring as shown in
Fig. The properties of a segment depend on the bending moment at its midpoint and are
assumed to be constant over the length of the segment. Static condensation is used to reduce this
multi-spring model to a single frame element. Even though the nonlinear element behavior is
eventually lumped at the end springs, this element belongs to the family of distributed plasticity
models because it accounts for inelastic deformations that take place along the element. The
multiple spring model was first used in the study of the seismic response of coupled shear walls,
which exhibit significant variation of axial force. To account for the interaction between axial
force and bending moment a three dimensional limit surface was introduced for the rotational

16



Nonlinear rotational spring
|

(b) Bending moment diagram

Segments with uniform stiffness
|
\ \

(c) Section stiffness distribution

Fig. 1.5 Multiple spring model (Takayanagi and Schnobrich 1979)

springs.

Finally, Filippou and Issa (1988) also subdivide the element in different subelements, but
follow a different approach. Each subelement describes a single effect, such as inelastic behavior
due to bending, shear behavior at the interface or bond-slip behavior at the frame joint. The
interaction between these effects is then achieved by combination of the subelements. This
approach allows the hysteretic law of the individual subelement to be simpler, while the member
still exhibits a complex hysteretic behavior through the interaction of the different subelements.

1.2 Parallel Computation for transient analysis

It is essential that the program of FE analysis can model as large structure as possible in
real time. Generally, the time increment in a seismic simulation is 0.01 sec. Henceforth, it
should be able to perform a full nonlinear analysis for a time step in exactly 0.01 sec. This
requires a parallel program to decrease computational time.

In FE analysis, we note that there are two major CPU intensive operations:

1. Determination of inverse matrix
2. Element state determination for force recovery.

That is, computational time depends on determination of inverse matrix and element state
determination.

17



Iterative methods except for initial stiffness method have determination of inverse matrix
and element state determination every time step or iteration. Mercury which is the program
of FE analysis in research uses several iterative methods for transient analysis. However, the
program for parallel processing focuses on the Shing method which uses initial stiffness method.
The Shing method has a disadvantage that as the analysis proceeds, the errors introduced by
the initial stiffness matrix, and the fixed number of iterations (about 10) increase (due to
nonlinearity) even if computational time of it is faster than it of other iterative methods. To
overcome it, Mercury needs to update stiffness matrix which is made by nonlinearity during
FE analysis, and to determine inverse matrix with it. It may increase computational time
compared with the Shing method. For this reason, Mercury will introduce a modified Shing
method which uses modified initial stiffness matrix instead of initial stiffness matrix. The
modified Shing method includes two processors to determine inverse matrix with modified initial
stiffness which is not computed regularly. One processor is for element state determination and
other for determination of inverse matrix. It will be described in Sec.

As other method to reduce computational time, Mercury will also introduce the parallel
processing for element state determination. In case, it can use several processors. It will also
be described in Sec.
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Chapter 2

ELEMENT FORMULATION

This chapter will describe the formulation of the elements in Mercury. It will start with
the simplest one, truss and then proceed with beam-column of increasing levels of complexity.
Finally zero length element and section element will be addressed.

2.1 Truss Element Formulation

The truss element has only one degree of freedom associated with each node in local reference
whether in 2D or 3D.

2.1.1 Formulation

As with all finite elements, stiffness matrix derivation hinges on three requirements.

1. Compatibility

Displacement Section displacements are determined from the element nodal displace-
ments through the shape function. Because truss element has only one d.o.f per
node, the generalized relationship between section displacement vector dg(x) and
element nodal displacement vector d. can be expressed as

ds(z)

{ u(@) }
[

Uz
1oz _x}
AR

where Ny (z) is the matrix of linear interpolation functions.

{M

Deformation Under the assumption that displacements are small, the section deforma-
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tion vector €4(z) is related to the element nodal displacement vector by

1) o.)

where By(x) is the matrix obtained from the derivatives of Ng(x).

2. Constitutive law

Section constitutive law is expressed as

{ No(z) } =ks(z) - e4(2) (2.2)
—_———

os(x)

where o(z) is the sectiorl] force vector, and k() is the section stiffness matrix.

For linear elastic analysis ks(z) is simply equal to

where, E(x) and A(x) are elastic modulus and cross sectional area.

3. Equilibrium

For the force distribution to be in equilibrium, the relationship between the element nodal
force vector f. in local reference and the section deformation vector is derived from the
principle of virtual displacement

Le
sdl T, = | dey(@)Toy(x) dz (2.3)
N—— 0
External

Internal

which is a weak form of equilibrium.

Substitution of Eq. Il and Eq. into Eq. and since the latter must hold for any

The notion of section is not essential to understand the formulation of the truss element stiffness matrix. It
is nevertheless introduced to be consistent with the subsequent formulation of beam-column (Sec. [Z2])
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arbitrary éd, lead to

-
o
Il
=
&
o
®

The element stiffness matrix in local reference is thus given by

Le
k. = /0 By(z)" - k(z) - Bg(z) dz

2.1.2 Coordinate system for 2D truss element

Y Y X
VY2'VY2 * /
\ —
N,,, T,
Ny o, Uy, } ze
\
\
\
y
Vy1s Vyq \ \ )
x | S - =X

Nx1'ux1

(a) Global reference in an element (b) Local referenca element

Fig. 2.1 Internal forces and corresponding displacements in global and local coordinate system
for the 2D truss element

The element nodal forces and displacements are expressed with respect to the global refer-
ence, Fig. 2Ia) as:
The element nodal force vector in global reference is given by

F. = [Nx1, V1, Nx2, Via]T
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and the element nodal displacement vector by
bc = lux1, vy1, ux2, vya)”

Furthermore, the element nodal forces and displacements can be expressed with respect to
the local reference as shown in Fig. 2II(b). In which case we would have

for the element nodal force vector, and
ae - I_ﬂl‘la ﬂxZJT

for the element nodal displacement vector.
The rotation matrix which transform global reference, Fig. 2Il(a), to local reference ,Fig.
[2Z1I(b), is given by I, such that

f.=T. F.
d. =T, 6.
K.=TI7T .k, T,

where, K. is the element stiffness matrix in global reference and the rotation matrix is

| Nx1 Wi Nxz W
I'.=| Ny |cosa sina 0 0

Nao 0 0 cosa sina

2.1.3 State determination

In a nonlinear structural analysis, state determination for 2D truss element is identical to
the stiffness-based 2D beam-column element. It will be discussed in Sec. Z2.1.3] and 2.2.1.4]

2.2 Beam-Column Element Formulations

The formulation of nonlinear frame structure using elements with layer /fiber sections can be
achieved using the stiffness-based (displacement-based) method or the flexibility-based (force-
based) method. In our implementation both methods will assume that deformations are small
and plane sections remain plane during the loading history. The stiffness-based method assumes
displacement interpolation functions along the element. This assumption will require a sufficient
number of elements to achieve an accurate response. On the other hand, the flexibility-based
method will have force interpolation functions along the element and a smaller number of
elements than for the stiffness-based method will be needed to achieve the same level of accuracy.

However, the element formulation in the flexibility-based method is more complex than that
of the stiffness-based method because of the need to iterate in order to obtain € from material
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constitutive models which are usually expressed as o = o(¢) (Lee and Mosalam 2004).

In addition, the element formulation in the stiffness-based method is more straightfor-
ward and widely used in conventional finite element method. In this study both the stiffness
and flexibility-based methods will be used to formulate the distributed nonlinear model with
Bernoulli beam theory.

Elements will be characterized by several cross-sections located at the numerical integration
points, defined by Gauss-Legendre quadrature rule for stiffness-based method or Gauss-Lobatto
quadrature rule for flexibility-based method. Furthermore, each section will have a suitable
number of layers/fibers where each one is under uniaxial state of stress.

2.2.1 Stiffness-Based 2D Beam-Column Element

We next formulate the stiffness matrix of the beam-column elements by considering the
“classical” stiffness-based formulation first. The formulation assumes that the axial displace-
ments are described by linear polynomial interpolation functions while the transverse displace-
ments are modeled by cubic ones.

2.2.1.1 Formulation
As for the truss element we consider each of the three requirements which must be met.
1. Compatibility

Displacement Section displacements are determined from the element nodal displace-
ments through the shape functions. The generalized relationship between section
displacement vector dg(z) and the element nodal displacement vector d. can be
expressed as

d(x)'Lﬂxla ﬁyly 921, ﬂm% ﬁy% 922 JT

de

where Ny (z) is the matrix of displacement interpolation functions.

Ny(z) is a matrix of linear interpolation functions for axial displacements and cubic
ones for the transverse displacements

[e@ 0 0w 0 o
Na(z) = 0 ¢i(x) ¢a(w) 0  d3(x) du(x)

where 11, ¥, ¢1, ¢2, ¢3 and ¢4 are the interpolation functions for axial and trans-
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verse displacements and notation expressed by

¢1($) = —Lie-l-l ¢2($) = Lie

pr(z) = 285 3L +1 o(z) = £r-25+a
3 2 3 2

¢3(z) = 275 +37= ¢a(z) = =1

Deformation Under the assumptions that displacements are small and plane sections
remain plane, the section deformation vector £,4(z) (axial strain ,(z) and curvature
¢.(x)) is related to the element nodal displacement vector by

(2.4)

where Bg(x) is the matrix derived from the appropriate derivatives of the displace-
ment interpolation functions.

B0 = [ " e it 0 st st
with

vi(a) = -1 vy(a) = £

o(x) = &6 Oy(w) = S

b3(z) = —[F+im 1) = $H-£

2. Constitutive law

Section constitutive law relates axial strain and curvature to axial force and moment

{ o} k@ e (2:5)
LA ]

where o(z) is the section force vector, and ky(x) is the section stiffness matrix.

If ks(z) is not derived from layer/fiber discretization of the cross section, and for linear
elastic case k() is simply equal to

k,(z) = ’ . (2.6)
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where, FE(x), A(z), and I,(x) are elastic modulus, cross sectional area, and section moment
of inertia on cross sectional area.

3. Equilibrium

Assuming a force distribution which is in equilibrium, the relationship between the element
nodal force vector in local reference f, and the section deformation vector is derived from
the principle of virtual work

Le
odl Foo= [ des(a) - oy(x) du (2.7)
S—— 0
External

Internal

which is a weak form of equilibrium.

Substitution of Eq. 2.4] and Eq. into Eq. 2.7 and since the latter must hold for any
arbitrary dd., this leads to

T = Le _p
od, -f, = 6d, - By(z)" - ky(x) -e4(x) da
0
— LE
fo = / By(z)T - ky(z) - £5(z) dz
0
Le _
_ / Bu(2)" - ky(z) - Ba(x) dz-d.
0
k.
f.=k.-d.

The element stiffness matrix in local reference is thus given by
— Le
k. = / By(z)T - k(z) - By(z) dz (2.8)
0

2.2.1.2 Coordinate system for stiffness-based 2D beam-column with Bernoulli
beam theory

The element nodal forces and displacements are expressed with respect to the global refer-
ence, Fig. 2.2(a) as
F. = |Nx1, Vv1, Mz1, Nxa, Vya, Mzo|"

for the element nodal force vector, and

T
0c = lux1, vy, 071, uxa, vya, 0z2]

for the element nodal displacement vector.
Furthermore, the element nodal forces and displacements of the element can be expressed
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(a) Global reference in an element (b) Local referenca element

Fig. 2.2 Internal forces and corresponding displacements in global and local coordinate system
for the stiffness-based 2D beam-column element

with respect to the local reference as shown in Fig. 2.2|b)
fe = Llea Vyla lea Nm% Vy2a M22JT

for the element nodal force vector, and

qd a7 = n = — T
de = Lux17 Vyl, 0217 Ug2, Vy2, 922J

for the element nodal displacement vector.
The rotation matrix which transforms from global reference, Fig. 2:2|(a), to local reference,
Fig. Z2(b), is given by I'. such that

fo=T. -F,
d.=T. 4. (2.9)
K.=TI7.%, T,

where, K, is the element stiffness matrix in global reference.
The rotation matrix is then given by

[ Nx1 Wi Mz Nxa  Vya My
Nz | cosa  sina 0 0 0 0
Vyl —sina cosa 0 0 0 0
.= | M, 0 0 1 0 0 0
Ngo 0 0 0 cosa  sino 0
Vo 0 0 0 —sina cosa 0
| M, 0 0 0 0 0 1
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2.2.1.3 State determination

In a nonlinear structural analysis, the nodal force vector at each step corresponds to an
incremental external nodal force vector to the structure. The corresponding incremental nodal
displacement vector of structure is determined from an incremental external nodal force vector
and the element nodal displacement vectors are extracted for each element. The element nodal
displacements are used to determine internal section forces. The process of determining the
internal nodal forces that corresponds to the element nodal displacements is known as state
determination. The state determination process is made up of three phases as shown in Fig.

2.3t

1. Section state determination, Fig. 23[(c)

Internal section forces are computed from section deformations which are in turn deter-
mined from element nodal displacements

2. Element state determination, Fig. 2.3I(b)

The element tangent stiffness matrices and internal element nodal forces of each element
are determined from the internal section forces for each element which are in turn com-
puted from section deformations

3. Structure state determination, Fig. 2.3((a)

The element tangent stiffness matrices and internal element force vectors of each element
are assembled to form the augmented tangent stiffness matrix K%" and internal nodal
force vector P2 (P4 = Pi™ + PI™) of the structure. Where, subscript ¢ and u are

associated with free end constrained degrees of freedom respectively.

Once the structure state determination is complete, the internal nodal force vector is com-
pared with the total applied external nodal force vector and the difference, if any, yields the
residual nodal force vector which is then reapplied to the structure in an iterative solution
process until the difference of total applied external force vector and internal nodal force vector
satisfies equilibrium within a specified tolerance.

The state determination procedure is straightforward for a stiffness-based 2D beam-column
element. The section deformation vectors €5 (x) are determined from the element nodal dis-
placement vector d. as shown in Eq. 24l The corresponding section tangent stiffness matrices

kgag(a:) and the internal section force vectors affet (x) are determined from the section constitu-

tive law, Eq. The element tangent stiffness matrices Ezm are obtained from Eq. 2.8, while
the internal element nodal force vectors flent are determined from the principle of virtual work

s,e

. Le '
£l / By () - o™ (2)da (2.10)
0

It is important to note that this method leads to an erroneous element response in the
nonlinear case. This problem is again illustrated by Fig. which shows the evolution of
the structure, element and section states during one incremental external force vector at free
degrees of freedom AP, ,, that requires several iterations k (Spacone, Ciampi and Filippou 1992).
Where, subscript n refers to external force step, superscript k& the k' iteration within the
external force step n.
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(a) Structure level at force step1 with NewtonRaphson iterations

Element nodal force f;
A

Fint
fe,n
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£5,(X) = By (x) Od}

|]7'im’k

sen
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(b) Element level in local reference
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Fig. 2.3 State determination for stiffness-based method
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The Newton-Raphson iteration method operates in the global coordinate (structural level)
system. At each Newton-Raphson iteration, the incremental nodal displacement vector at the
structure level is determined from the nodal incremental force vector, and then the total element
nodal displacement vectors are determined next.

At the k*" Newton-Raphson iteration, the element nodal displacement vectors in local ref-
erence d. ,, of the nodal displacement vector ugn (ulgn = uf’n + uﬁm ) of degrees of freedom at
the structure level are determined for each element.

Using Eq. the section deformation vectors a’;em(w) for each element are computed. This
is the first approximation of the element state determination, since By () is exact only in the
linear elastic case of a prismatic member.

Assuming that the section constitutive law is explicitly known, the section tangent stiffness

. tan,k . . t,k . .
matrices Ksen () and the internal section force vectors ayen(x) are readily determined from

. . . —k .
elgen(x) Then, using Eq. 2.8 and Eq. .10 the element stiffness matrices k. ,, in local reference

. . zint,k .
and the internal element nodal force vectors in local reference fZL:L’ are determined next.
Fig. 24 is the summary of the procedure on all state determinations.

Structure level t -1
; [K en-al

@R, =R% -P%, > (O ul,

tank intk Rk — pext _ intk
@ Ktt,n J F)t,n ! 9 Pt,n - Pt,n Pt,n

A e

=
Element level | A e +
r I

Ttank ¥ intk © tank itk —k o
@ k:: 7fe,n — Ke,n 'Fe,n @ de,n R e,n

Bge(X)

Section level Bd,e(x)
Section/material constitutive law
tank intk Kk
@ kse,ig,n(x)’ a-SIT::‘,n (X) - @ £s,e,n(x)

where A, , and\;, are the displacement extracting opesat the force assemblingevator

Fig. 2.4 State determination procedure for stiffness-based method

Since By (z) is only approximate, the integrals for the element tangent stiffness matrix
in local reference and the internal element nodal force vector in local reference will also yield
approximate results. The approximation of By .(x) leads to stiffer solution, Fig. 23] (a) and
(b). Note that the curve labeled “Exact solution” is only exact within the assumptions of the
section constitutive law and the kinematic approximations of the problem within in assumptions
that deformations are small and plane sections remain plane.

To overcome the numerical errors that arise from the approximation of Bg.(x), analysts
resort to fine mesh discretization of the structure, especially, in frame regions that undergo
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highly nonlinear behaviors, such as the member ends. Even so, numerical convergence problems
persist. This is precisely why the flexibility based element will yield better results. This will
be discussed later.

2.2.1.4 Nonlinear analysis using stiffness-based formulation

With reference to Fig. 2.4 to .7l we will examine one single step of the Newton-Raphson
mehthod for the nonlinear analysis with section constitutive law. Force and displacement
control, mentioned here, are discussed in Sec. Il Layer or fiber section procedure in Fig. 2.7
will be described in Sec.

Step numbers are shown in Fig. 231

Step 1 Compute the incemental nodal force vector APext
APext Pext Pf,xnt—l

Step 2 Compute the incremental nodal displacement vector du;, and corresponding total
nodal displacement vector u;, in the structure level. Initially, iteration starts from Eq.

21T with £ = 1.

If k=1,
6uﬁ,n = Uyn — Uyn—1, Uyn = Uyn-1+ 5115771
suy, = [Ki;“:;’f‘l] (AP — Ky oul ) (2.11)
k
ut,n = ut M + 5utn
Ifk=#£1,
PRJC Pewt sz,k
Jufit = (Kot pyb (2.12)
u?iz—l =Uyp-1+ AukJrl = ut nt 5uk+1

where, superscript k is the iteration counter, sz the residual nodal force vector in struc-

tural level, AukJrl the total incremental displacement vector from the last converged step,

k+1

and du, " the last incremental displacement vector.

The augmented stiffness matrix Kg is expressed as

Py Ki K } { Uy }
= 2.13
where subscript ¢ and u are associated with free end constrained degrees of freedom

respectively.

Step 3 Loop over all the elements and determine their state.
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Fig. 2.5 Flow chart of nonlinear analysis using stiffness-based method (1)
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Fig. 2.6 Flow chart of nonlinear analysis using stiffness-based method (2)
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Fig. 2.7 Flow chart of nonlinear analysis using stiffness-based method (3)
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e Determine the element nodal displacement vector in global reference.
Ifk=1,
&slgm = Ab,e : 5u§n + Ab,e . 5uﬁ7n

Ifk#1,
885, = Ay - ouf,,

where, A; . is displacement extracting operator.
8¢, =08c," + 08¢,

and, ng corresponds to d¢ 1.

e Determine the element nodal displacement vector in local reference

ods, =T, - 68%,

—k —k—1 —~k
de,n = de,n + 5de,n

_0 —
and, dem corresponds to d¢ 1.

Step 4 Start the section state determination by looping over the element’s sections. The total
number of section may vary from element to element. Therefore, the total number of
sections in an element is nlp. and it depends on the number of integration points in the
Gauss Legendre quadrature rule.

Determine the section deformation vector. For the section state determination, we first
need to divide section into general section and fiber section as described at Sec. Here
we consider general section only. The state determination of each section is performed in
loop s which refers to the s section.

k

e,n

Sek

s,e,mn = Bd,s,e ’ 5a
where, By, . is the matrix derived (derivatives) from the displacement interpolation func-
tions at st section of e’ element.

ek, =l 4 oek

s,en s,en s,en

0

and, &g ., corresponds to €;¢5—1.
g )

Step 5 Determine the section tangent stiffness matrix and the internal section force vector.
If the section constitutive law is explicitly known, then kéag f and aé"etﬁ are determined
from e'é?,em. For linear elastic section, we need not to recompute k?‘;‘ ¥ as it is identical to

the initial section stiffness matrix kg .

If we have elastic section,

tan,k
ks,e,’n - ks,e

int,k tan,k k
o-s,e:n - ks,e,’n "Cs.en
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tan,k - . . . . .
where, ks[,lg n 18 the section tangent stiffness matrix at k" iteration.

Step 6 Determine first the internal element nodal force vector and the element tangent stiffness
. . wint,k —tan,k
matrix, then from Eq. 210 and Eq. 8] determine fin:L and K"

e,n

s,en

gint,k Z T int,k
fe,n = Bd,s,e o Wt&e
s

where, wt, . is the weight coefficient associated with the Jacobian at the sth section of

the e'” element.
en d,s,e s,e,n

—tan,k
Kk > Bl KM By whie
S

—tan,k . . ..
where, k. ,,” is the element tangent stiffness matrix in local reference.

Finally, from Eq. 2.9, determine Fgﬁ’k and Kg’lﬁ k.
TN

tan,k  __ T Ftank
Ke,n - Pe 'ke,n -Te

Step 7 Determine the internal nodal force vector and the augmented tangent stiffness matrix.
int,k int,
Pt = D Al Ft

e
tan,k T tan,k
Ks,n - Z ‘Ab,e : Ke,n : Ab,e
e

. . tan,k . tan,k
where, Age is force assembling operator, and K; Z has the four submatrices, Kj;"",

Kok gk anq KZ‘ZLnk as shown Eq. 2131

tu,n ut,n
Step 8 Compute the residual nodal force vector at the structural level from Eq. 2.12]and check

for convergence:

o If Pf ;Lk is within the specified tolerance, go to next force increment.

o If Pf;zk is not within the specified tolerance, k is updated to k + 1 and the next
Newton-Raphson iteration initiates. Eq. 212 in Step 2 through Step 8 are re-
peated until convergence occurs at the structure level.

2.2.2 Flexibility Method 2D Beam-Column Element

Flexibility-based 2D beam-column elements are “nonconformist” finite elements since they
yield the element flexibility matrix rather than the classical stiffness matrix, and are based on
the equations of equilibrium rather than on assumed displacement field. Nevertheless, they do
offer some important advantages which will be highlighted later.
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2.2.2.1 Formulation

In this section we will derive the element flexibility matrix ¢. without rigid body modes
and then invert it to obtain the corresponding element stiffness matrix k. (again without rigid

body modes).

This is particularly interesting in those instances where stiffness-based method formulations
are approximate and flexibility-based method formulations are exact such as a section varying
along the element and elements with material nonlinearity. As previously, we will use the

principle of complementary virtual work through the usual three major steps.

1. Equilibrium

A W, (%)
A _A_A- A _ A 2 A A A A 5
/?/’ '\\\\ N X2 sz
< 4
= 5 W, (X)) _-" 5
e, -
M 71 Hzl === . M 22’622

A A

TA A

== =7 ~N®X.5()
M .0, Weix(X) ,KAZ(X),@(X)

- p
X \

Fig. 2.8 2D beam-column element without rigid body modes

We start with the strong form of the equilibrium equation, Fig. 2.8

we(z) +Lf-0s(x)=0
N—— —
External  Internal

(e) d 9
Wy (1‘) dz Nl’(w) _
{wéﬂ><w>}+ 0 L Lo p=o

(2.14)

where, w,(x) is the external element force vector and Ly is the force differential operator.

We first assume that there are no external element forces, that is we(x) = 0. The selection
of force interpolation functions, Ns(x) results from the requirement that equilibrium, as
expressed in Eq. .14], must be satisfied in the strong form. Thus, for the Euler-Bernoulli
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beam,

a | L)
will yield
dN@)
e Y
d' M. (z) 0
dz” a

(2.15)

- .
(a) Positive section axial force

(b) Positive section moment

Fig. 2.9 Sign convention on section force

Applying the boundary condition from Fig. 2.8 with the sign convention (on section force)
shown in Fig. 2.9

N, (L) = N9

Mz(o) — —iVlzx]

M.(L) = M,

we obtain

= M1+ Mo

L 2.16
c2 = —M: (2.16)
c3 = Ng2
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Substituting Eq. B.16]l into Eq. B.15]

Nx(x) = ng
X X
Mo(z)= (2 —1) Moy + =M,
(z) <Le ) 1+ M
or
le
N, (z) } [ 0 0 1 ]
{ MZ(.’L') L_e -1 L_e 0 Nx2
os(z) N/ (x) T

where, f. is the element nodal force vector without rigid body modes.

Finally, from Eq. B 17, we extract the matrix of force interpolation functions.

0 0 1
Nf(:E)_ Lie_l Lie 0

. Constitutive law

Whereas we have previously expressed section forces in terms of section deformations (Eq.
2.5]), we now need to express section deformations in terms of section forces

es(z) = cs(z) - o4(x) (2.18)

where, c,(z) is the section flexibility matrix. If cs(z) is not derived from fiber section
(which will be discussed in Sec. 23]), then for linear elastic analysis cg(x) is simply.

1 0
cy(z) = | F@)AR@) )
CE - P AG)

which is the inverse of Eq.

. Compatibility

We will derive the compatibility equation from the weak form of the principle of comple-
mentary virtual work (as opposed to the principle of virtual work for the stiffness-based
method in Eq. 2711
Le
~ T ~
of. de = ; 6o s(x)" - e5(z)dx (2.19)

External
Internal

where, and d. is the element nodal displacement vector without rigid body modes.

Substituting Eq. 217 and Eq. 218 into Eq. 219 and since the latter must hold for any
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arbitary of,, we obtain

of."d, = O 5t Np(@)T - cy(z) - o4(x) do
~ Le
d. = Nf(x)T cs(x) -o4(x) do
0
Le _
:/ N (@) - es(z) - Ny(z) da £,
0
Ce
aezée f‘e

The element flexibility matrix without rigid body modes in local reference is thus given

by
Le

Ce =

0

Ny(z)" - cs(z) - Ny(x) da

(2.20)

which is the counterpart of Eq. 28 and the corresponding element stiffness matrix
without rigid body modes in local reference is simply

k, = [¢.]7!

2.2.2.2 Coordinate system for flexibility-based 2D beam-column element with

Bernoulli beam theory

(a) Local reference in an element

(b) Local refeecincan element
without rigid body modes

Fig. 2.10 Internal forces and corresponding displacements in local coordinate system with or
without rigid body for the flexibility-based 2D beam-column element
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Contrarily to the reference system of the stiffness-based method in Fig. 22 we need to

consider forces and displacements in local reference with and without rigid body modes as
shown in Fig. 2100

Element nodal force vector without rigid body modes in local reference are (arbitrarily)
selected as

fe - LM217 M227 NxZJT

and the corresponding element nodal displacement vector without rigid body modes in local
reference are given by

de - Lezh 9227 ﬂJ:QJT

M z1? ézl M 22’é22
; 4//\ R p
x2 »7 % X217 ¥x2

Fig. 2.11 The relationship between rigid body modes and no rigid body modes

The relationship between rigid body modes and no rigid body modes is obtained through
equilibrium, Fig. 2111

N1 0 0 —17

Vi o 0 N,

le o 1 0 0 ~

Noo (| 0 0 1 Mz (221)
v 1 1y Na2

_y2 Le Le H_/

M .o L 0 1 0 | f.

fe r
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~
!

POt R
d =T .4, (2.22)
K~ & T,

which is the counterpart of Eq.

2.2.2.3 State determination

In their early and pioneering publication Zeris and Mahin (1988) did not provide a clear and
consistent method for calculating the internal element force vectors from element deformations.
Possibly because the finite element formulation is based on the complementary principle of
virtual work and corresponding flexibility-based 2D beam-column elements do not have shape
functions that relate deformation field inside the element with element nodal displacement
vector. To address this problem in the flexibility-based method, the numerical implementation
would typically use the stiffness-based method in the structural level where the solution of the
global equilibrium equations yields displacements. Also, the internal element force vectors of
all elements in the structure need to be determined during the phase of state determination. In
order to better describe the consistent state determination process, we will derive the governing
equations by the mixed stiffness-based and flexibility-based methods.

The nonlinear algorithm for the mixed stiffness-based and flexibility-based methods will be
divided into two methods (a) with Newton-Raphson iteration in element level to determine
element state, (b) without iteration in element level to determine element state. The former
is based on the formulation of (Spacone et al. 1992) and the later on the one of (Carol and
Murcia 1989).

2.2.2.3.1 With element iterations As with the state determination of stiffness-based 2D
beam-column in a nonlinear structural analysis the state determination process for the mixed
stiffness-based and flexibility-based methods with Newton-Raphson iteration loop in element
level is made up of three phases as shown in Fig. (which is the counterpart of Fig. 2.3]).

1. Section state determination, Fig. 2.12|(c)
2. Element state determination, Fig. 2Z12|(b)

3. Structure state determination, Fig. 2.12](a)

Where, superscript j in Fig. [Z12(b) denotes the iteration scheme at the element level in the
element state determination process. This iteration loop is necessary for the determination of
the internal element nodal force vector f:"** that correspond to the element nodal displacement
vector &’; during the k" Newton-Raphson iteration.

This method is explained with the assumption that the Newton-Raphson is used for the
iteration process in structural level. The iteration process in structural level does not affect
the strategy for iteration process in element level, which determines the internal element nodal
force vector fé”t for the given element nodal displacement vector d..

In a flexibility-based 2D beam-column element, the first step is the determination of the
element nodal force vector f'ek 7 from the current element nodal displacement vector using the

tan,k,j—1
e,n

element tangent stiffness matrix k ) of the last iteration, then the force interpolation
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Fig. 2.12 State determination for flexibility-based method with element iteration
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functions Ny .(x) will then yield the section force vectors alzgn(x) along the element. These
are too complications in this procedure. The first is the determination of the section deformation
vectors slggn(x) from section force vectors, since the nonlinear section force-deformation relation
is commonly expressed as an explicit function of section deformation vector. The second arises
from the fact that changes in the section tangent stiffness matrices k';“g‘n(x) produce a new
element tangent stiffness matrix which, in turn, changes the element nodal force vector for the
given element nodal displacement vector.

These problems are solved through a nonlinear approach which first determines residual
element nodal displacement vector ~£’f 7 at each iteration. Then, compatibility of displace-
ment at the structural level requires that this residual element nodal displacement vector be
corrected. This is accomplished at the element level by applying corrective element nodal force
vector based on the current element tangent stiffness matrix. The corresponding section force
vectors are then determined from the force interpolation functions so that equilibrium will al-
ways be satisfied along the element. These section force vectors will not change during the
section state determination in order to maintain equilibrium along the element. Finally, the
linear approximation of the section force-deformation relation about the present state results in
residual section deformation vectors ag’e]fhj (). These are then integrated along the element to
obtain new residual element nodal displacement vector and the whole process is repeated until
convergence occurs. It is important to stress that compatibility of element nodal displacement
vector and equilibrium along the element are always satisfied in this process.

The nonlinear solution procedure for the element and section state determinations in Fig.
2.12] are illustrated in details in Fig. 2.13] for one Newton-Raphson iteration k. For illustrative
purposes, convergence in loop j is reached in three iterations in Fig. 2131

The goal of the Newton-Raphson iteration loop in element level is to determine the internal
element nodal force vector for the current element nodal displacement vector at the k" Newton-

Raphson iteration, hence
d, = di,' +odg,
An iterative process in element level denoted through the superscript j will be introduced
inside the k' Newton-Raphson iteration, and the first iteration corresponds to j = 1.
The initial state of the element, represented by the point A, and 7 = 0 and k = 0 in Fig.
2131 corresponds to the state at the end of the last convergence in structural level. With the

initial element tangent stiffness matrix given by

lamh=1i=0 = glon_

and the given incremental element nodal displacement vector
sdTHI=! = 6di!

hence, the corresponding incremental element nodal force vector is

—1
ck=17j=1 __ |xtan,k=1,7=0 . sAak=1,j=1
5fe,n - |:ce,n ] 5de,n
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The incremental section force vectors can now be determined from the force interpolation
functions
k=1,j=1 fh=1,j=1
50-876,777/.7 (l‘) = nye(:p) : 5fe,n 7
With the section tangent flexibility matrices at end of the last convergence in structural
level given by
tan,k=1,j=0/,\ _ .t
Cs[,lgn J (:E) - Cs?erfn—l(:p)
the linearization of the section force-deformation relation yields the incremental section defor-
mation vectors.
58k:1’j:1(l‘) — ctan,k:l,j:O(x) X 50_k:1,j=1($)

s,en s,en s,en

The section deformation vectors are updated to the state that corresponds to point B in
Fig. 2I3(b), and the updated section deformation vector will be given by

Ek:l,j:l

s,en

(x) = elh/=0(x) + 062 (@)

s,en s,en

For the sake of simplicity we will assume that the section force-deformation relation is explic-
itly known, then the section deformation vectors efilnj :1(33) will correspond to internal section
force vectors o511 (2) and updated section tangent flexibility matrices ci2 == () in
Fig. 2I3I(b) can be defined.

The residual section force vectors are then determined

O.R,kzl,jzl(x) — a.k:l,j:l(x) _ a.int,k:l,j:l(x)

s,e,n s,en s,en

Rk=1,j=1

and are transformed into residual section deformation vectors €5z, ()
Rk=1,j=1 _ tank=1,j=1 Rk=1,j=1
ss,e,n (Z’) = Csen (Z’) ' as,e,n (Z’)

The residual section deformation vectors are thus the linear approximation of the deforma-
tion error made in the linearization of the section force-deformation relation (Fig. 2I3I(b)).
While any suitable section flexibility matrix can be used to calculate the residual section defor-
mation vector, the section tangent flexibility matrices offer the fastest convergence rate.

The residual section deformation vectors are integrated along the element using the com-
plimentary principle of virtual work to obtain the residual element nodal displacement vector.

Le

AT = | Npe@)T e (@) do

At this stage the first iteration (j = 1) is completed. The final element and section states for

j = 1 correspond to point B in Fig. 213l The residual section deformation vectors sg’e'f: Li :l(az)
and the residual element nodal displacement vector df’f =17=1 Were determined in the first

iteration, but the corresponding element nodal displacement vector have not yet been updated.
Instead, they constitute the starting point of the remaining steps within iteration loop j.
The presence of residual element nodal displacement vector f,f =LI=L Wil violate com-

patibility, since elements sharing a common node would now have different element nodal dis-
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placement vector. In order to restore the inter-element compatibility, corrective force vector
5f§ ~1J=2 must be applied at the ends of the element as follows

—1
rk=1,7=2 ~k=1,7=1 JR,k=1,7=1
5fe,n " = - {ce,n " ] : de,;z "
L | (2.23)
e = ; Nye(@)" - cm=1= (@) - Ny o(2)dx

Thus, in the second iteration (j = 2), the element nodal force vector is updated as
Fh=1,j=2 _ pk=1j=1 | sck=1;j=2
fe,n J - fe,n J + 5fe,n J

and the section force and deformation vectors are also updated to

0027 () = Ny () - 085172
oh T (2) = ot TN (@) + 00T TR ()
b TN (1) = elFELI= (@) o+ clom k==Y () - 60T (o)
M @) = €M N @) + 0ek T ()

The state of the element and sections within the element at the end of the second iteration
j = 2 corresponds to point C in Fig. 213l It should be noted that the updated tangent
flexibility matrices /I ="7=2(z) and residual section deformation vectors efas =% (z) are
computed for all sections.

The residual section deformation vectors are then integrated to obtain the residual element

nodal deformation vector N?,;{“ =17=2 and the new element tangent flexibility matrix él;le’j =2
is determined by integration of the section flexibility matrices céae" f =LJ :2(:17) according to Eq.

[2.231 This completes the second iteration within loop j.

The third and subsequent iterations follow exactly the same scheme. Convergence is achieved
when the selected convergence criterion is satisfied. With the conclusion of iteration loop j the
internal element nodal force vector for the given element nodal displacement vector &’gzl are
established, as represented by point D in Fig. and Fig. 213l The Newton-Raphson
iteration process can now proceed with step k + 1.

When incremental element nodal displacement vector 5&’2,’%:1 = 5(~i§m is added to the el-

ement nodal displacement vector &’;;1 at the end of the previous Newton-Raphson iteration,

it is important to make sure that the element nodal displacement vector &’gn do not change
except in the first iteration 7 = 1 during iteration loop j

Equilibrium along the element is always strictly satisfied since section force vectors are
derived from element nodal force vector by the force interpolation functions.

ok (x) =Ny (z)-£f, and da% () =Ny.(z)- (5t~"fn

s,en e,n s,en
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Compatibility is also satisfied, not only at the element ends, but also along the element.

PO . -1 .
sigd =[] A
ki P
50-3:2,n(33) = Nf,e(:p) ’ 5fe,7rjz
k,j  _Rkj—1 Jj—1 k,j
eyl n(x) = el @) + iy T @) - 0l (x) (2.24)

The second term of Eq. [2.24] expresses the relation between section deformation vectors and
element nodal displacement vector. However, it should be noted that residual section deforma-

tion vectors sﬁ?g’f;{ _1(:17) do not strictly satisfy this compatibility condition. This requirement

can only be satisfied by integrating the residual section deformation vectors ef’e]f}f _1(x) to

obtain N?,;{“ 7= Since this is rather inefficient from a computational standpoint, the small
compatibility error in the calculation of residual section deformation vectors Eﬁé’f}f () will be
neglected.

While equilibrium and compatibility are satisfied along the element during each iteration
of loop j, the section force-deformation relation and the element force-deformation relation is

only satisfied within a specified tolerance when convergence is achieved at point in Fig. E.T3l

2.2.2.3.2 Without element iterations This alternative method, first introduced by (Carol
and Murcia 1989) has the added advantage (over the previous approach) of avoiding an inner
element loop, at the expenses however of additional iterations at the structural level.

As with the state determination of stiffness-based 2D beam-column in a nonlinear struc-
tural analysis the state determination process for the mixed stiffness-based and flexibility-based
method without iteration in element level is made up of three phases as shown in Fig. 2141

1. Section state determination, Fig. 2Z.T4(c)
2. Element state determination, Fig. 2Z.14|(b)

3. Structure state determination, Fig. 2.14](a)

Starting with completion of the structure state determination, the internal nodal force vector

at k" iteration Pft",fk is compared with the total applied external nodal force vector Pf”ﬁf and

the difference, if any, yields the residual nodal force vector Pf ,’Lk which is then reapplied to
the structure in an iterative solution process until the difference of total applied external force
vector and internal nodal force vector satisfies within a specified tolerance.

The state determination procedure is straightforward for a flexibility-based 2D beam-column
element without element iteration like stiffness-based 2D beam-column element. The element
nodal displacement vector &’;n without rigid body modes at the k" iteration is determined
from Eq.

sdf, =T, ofF,
df, =df,' +odf,
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Fig. 2.14 State determination for flexibility-based method without element iteration (Carol
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and the element nodal force vector f"fn without rigid body modes is determined from Eq. 2.201

ck _ Ttank—1 <3k
5fe,n - ke,n ' 5de,n

. N ~ 2.25
£, =t 1+ off (2.25)

The section force vectors at the k' iteration o"éem(x) are determined from the element

nodal force vector féfn, and then the section deformation vectors at k' iteration s'§767n(az) are

determined from the section force vectors ai?,em(x).

d0% . n(z) = Ny, - ot
ob . n(r) =0k (z) + 0%, ()
0€8 o () = 0 (2) - 0, (@)
€ e (@) =0 () + el (w)

Assuming that the section constitutive law is explicitly known, the section tangent flexibility

matrices c'§767n(x) and the internal section force vectors a’s"glf () are readily computed from
k
ss,e,n(x)'

In this approach the residual section force and deformation vectors are first determined from

the section tangent flexibility matrices c’s“en(:n)

Rk _ k int,k
as,e,n(x) - as,e,n(x) - a??et,n(x)
sf,gfn(x) = c];,e,n(x) : af,gfn(:p)

The residual section deformation vectors are integrated along the element using the com-
plimentary principle of virtual work to obtain the residual element nodal displacement vector.

Le
IR,k T R,k
de,;z :/0 Nf,e(x) 'es,é,n(x)

The element flexibility matrix without rigid body modes é’;n is determined from Eq. 220,
and then the residual element nodal force vector will be determined form the residual element

nodal displacement vector.
¢Rk ~k 1—1 3Rk
fe,;z = [ce,n] : de,;z (226)

The internal element nodal force vector without rigid body modes is determined from Eq.
220 and Eq. 2.20]
Fintk _ fk PRk
fe,n - fe,n - fe,n

Finally, the internal element nodal force vector is obtained from Eq. 2.22]

—int,k

T ~.
_ int,k
fe,n - Fe : fe,n

The flexibility-based 2D beam-column element without iteration in element level to deter-

49



mine element state is straightforward method for the state determination procedure unlike the
flexibility-based 2D beam-column element with Newton-Raphson iteration in element level to
do. This element formulation uses the force interpolation functions without any assumption
unlike stiffness based element with displacement interpolation functions. Due to the exact
character of the force interpolation functions, no intrinsic errors exist in the flexibility-based
2D beam-column element formulation without iteration in element level to do. In addition,
there are no limitations to the size of the elements, if the element has consistent section along
longitudinal axis, for this reason (Carol and Murcia 1989)

Fig. 2I5a) and (b) are the summary of the procedure on all state determinations with
element iterations and without element iterations.

2.2.2.4 Nonlinear analysis using flexibility-based method

With reference to Fig. and 213 and Fig. to Fig. ZI8 for the method with
Newton-Raphson iteration loop in element level and Fig. to Fig. 221 for The method
without iteration in element level, we will examine one single step of the Newton-Raphson
method in structural level for nonlinear analysis using the flexibility-based method with section
constitutive law due to force and displacement control. Force and displacement control are
discussed in Sec. Il Layer/fiber section procedure in Fig. 277 will be described in Sec.

2.2.2.4.1 With element iterations We first examine the nonlinear analysis of flexibility-
based 2D beam-column element with element iterations with reference to Fig. to

Step numbers are shown in Fig. 2212, and numbers in Fig. indicate the procedure for
element and section determination during iterations.

Step 1 Compute the incremental nodal force vector AP“t
APext Pext Pf,xnt—l

Step 2 Compute the incremental nodal displacement vector du;,, and total nodal displacement
vector Uy, in structure level. Initially, iteration started from Eq. 227 and k = 1.

k=1,
511,]:;’” - uu,n - uu,n—l
Uy p = Uypn-1+ 5uk
k tan,k—1 ext ext tan,k—1 (227)
5ut,n [Ktt n ] [P Pt,n—l Ktu n (511 ]
k
ut,n = ut M + 5utn
It k4 1,
PRJf Pext sz,k
sufft = [Kynht bt (2.28)
uf;tl =, + Auk+1 utn + 5uk+1

50



Structure level [K tan ]
t,n—1. "
@Apt n - Pt,n—l - @ U n

@ Ktank Plntk — . PtRn,k = Pta: _Pint,k — Convergence /4),e

tt,n ? t.n

Element level T
e

= r
tank lntk F I, tank ¥ intk - r tanc? intk d;n - 52”
Ke" ’Fen ken ’fen ken 'f < ll:
\J
~tank ,j [, tank | JRK j =~ 1 FK,j
@ 0 s @ —> T
A N, ,e(X)
Section level N o(X)
gk grintk j (x) Section/material constitutive law \/

@ s,en ? s.e.n
grRki gRK]

-« sen X) 4— Sen(x)
Osen (X) sen (X) ( )

(a) With Newton-Raphson iteration loop in elemenel

Structure level [Ktan ]
— et _ ped Loat Y
@Apt,n - Pt,n _Pt,n—l > @ Ui

tank intk Rk _ pext _ Lintk
@ Ky, LN Pn > @ A L Convergence ‘_4)
,e

Element level A l
3

tank  intk Rk Fink g tank f intk d -—
Ken 1Fen ' ken !feln ‘kea: ’f ¢ ey

@ C;arr:k,de @ak > @ f‘k

Section level N¢ (X

tank lntk (X) Section/material constitutive law
<

@ sen’ sen @esen(x) 4_@ . )

sen(x) esen( )

(b) Without iteration in element level

Fig. 2.15 State determination procedure for flexibility-based method
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0., =0, +00,,] ., &), =&+ OES. whereay ) "=0¢., €y = Esen

. . . — _ K, j
Section constitutive law €rn [1 y,] (&sen
g Material constitutive law
L g, En
intk,j Atank
as,e,n ’Cs,e,n *
- { 1 } ok
a-lsneynyl =z |]Tr n’ Csaglri !
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oLy =0l —oly e =ty Wl
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Fig. 2.18 Flow chart of nonlinear analysis using flexibility-based method with Newton-
Raphson iteration in element level (3)
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where, superscript k is the iteration counter, sz the residual nodal force vector in struc-

tural level, Au®t! the total incremental displacement vector from the last converged step,

t,n
k+1

and du; 7" the last incremental displacement vector.

Step 3 Loop over all the elements and determine their state.

e Determine the element nodal displacement vector in global reference.
Ifk=1,
56§,n = Ab,e : 5u§n + Ab,e . 5uﬁ7n
If k #1,
56];n = Ab,e : 511?7”

where, A; . is displacement extracting operator.
88, =80, + 08¢,

and Jg,n corresponds to 8¢ 1.

e Determine the element nodal displacement vector in local reference.

—k
od,, =T. 687,
—k —k—1  —k
de,n = de,n + 6de,n
and Hg,n corresponds to He,n_l.

e Determine the element nodal displacement vector without rigid body modes in local
reference.

6df, =T, od.,
di, =dg,' +éde,

_0 ~ —_ ~
and, dem and dgn correspond to d¢ ,—1 and dej,—1.

Step 3a Start the element state determination. Loop over all elements in the structure. The
state determination of each element is performed within loop j.

e Determine the element nodal force vector without rigid body modes

~k7j — ~tan7k7j_1 ~k7j
5fe,n - ke,n : 6de,n
Nk‘?j — ~k7j_1 ~k7j
fe,n - fe,n + 5fe,n
Sk,j=1 zk,j=0 = tan,k,j=0 1k pk— Ctan,k—1
5de,’7]1 , fe,;{ , and and, ke',l,?’ 7= correspond to 5d’§, fénl, and ke‘fg’ .

Step 4 Start the section state determination by looping over the element’s sections. The total
number of section may vary from element to element. Therefore, the total number of
sections in an element is nlp. and it depends on the number of integration points in the
Gauss Lobatto quadrature rule.
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e Determine the section force vector.
For the section state determination, we first need to differentiate between general
section and layer /fiber section as described in Sec. 23] For the sake of this descrip-
tion we consider general section only. The state determination of each section is
performed within loop s where the subscript corresponds to the st section.

Skl =Ny, o0tk

S,e,M

kg _ Skj—1
as,e,n as en + 503 ,e,mn

where, Ny, . is the matrix derived from the force interpolation functions at sth
k—1

. k.1=0
section of et element, and o5z, corresponds to Ogen:
e Determine section deformation vector.

J R.k,j—1 tan,k,j—1 J
563 en 6:s ,e,mn + cs en 6as,e,n

kg _ Zkgj-—1
ESGTL Esen +5ES€'I’L
,j=0 tan,k,j=0 tan,k—1 R.k,j=0
and, €5 g n and csen” " correspond to 65 . n and ceen , and 5o = 0.

e Determine the section tangent flexibility matrix and the internal section force vector.

nk int,k,j
If we assume that the section constitutive law is explicitly known, cs en 7 and Osen”

k,j
are both determined from €57 ,,. However, in elastic section, we need not compute

csae" " J again as it is identical to the initial section flexibility matrix €.

e Determine the residual section force and deformation vector.

Rkyj _ ki int,k,j
as,é,h - s,’e,n - as,e:n’

Rk,j _ tan,k,j R,k,j
Esen — Csen” "Tsen

Step 5 Determine the updated element flexibility matrix and the residual element nodal dis-
placement vector.

The residual section deformation vectors and the section tangent flexibility matrices are
integrated along the element using the complimentary principle of virtual work to obtain
the residual element nodal displacement vector and the element tangent flexibility matrix.

Rk R,k
d I = ZNf,se se;zj WtS,e

~tan ki = Z Nf,s,e ’ tan,k,j ’ Nf,S,e cWhs e

s,en

Ltan,k,j __ ~tankj -
ke,n7 Y= [ce,n7 ’ ]

where, wt, . is the weight coefficient associated with the Jacobian at the sth section of
the et element.

Convergence at the element level must be satisfied with the residual element nodal dis-
placement vector.

o If dR k.7 is within the specified tolerance, go to Step 6.
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~ ki i1
° If R7 ) 7.]+

en ” is not within the specified tolerance, j and 5c~l§n are updated to j+1 and
—akka

, and the next Newton-Raphson iteration initiates. We then repeat Step 3a
through Step 5 until convergence occurs at the element level.

Step 6 Determine the internal element nodal force vector and the element tangent stiffness
matrix.

eint,k __ gintk,j
fe,n’ - fe,n7 ’
—int,k

fe,n =

Ryt 17

T o~
int,k
Fe ' fe,n
int,k
en

tan,k __ _tan,k,j
Cs,e,’n - Cs,e,’n7
Ltan,k __ 1.tan.k,j
ke,n7 - ke,n7 ’
T-tan,k ST Srank T
ke,n = Fe ! ke,n7 : Fe

—tan,k

tan,k __ T
Ke,n - Fe ! ke,n ' FE

Step 7 Determine the internal nodal force vector and the augmented tangent stiffness matrix.

int,k T int,k
Pt,n - Z Ab,e : Fe,n

e
tan,k T tan,k
KS n - Z Ab,e ’ Ke,n ’ -Ab,e
e

)

T - . tan,k - . tan,k tan,k tan,k

where, Ay is force assembling operator, and K ™ is consist of Ky )", Ky, s Koy,
tan,k
and Ky 7 -

Step 8 Compute the residual nodal force vector at the structural level from Eq. 2.281 We then
satisfy convergence with the residual nodal force vector.

o If Pf ;Lk is within the specified tolerance, go to next force increment.

o If Pf ;Lk is not within the specified tolerance, k is updated to k + 1 and the next
Newton-Raphson iteration initiates. Eq. 228 in Step 2 through Step 8 are re-
peated until convergence occurs at the structure level.

2.2.2.4.2 Without element iterations We then consider the methodology first proposed
by (Carol and Murcia 1989) in which there are no element iteration with reference to Fig. 214l
and Fig. 219 to 2211

Step 1 Compute the incemental nodal force vector AP?%.

ext __ ext ext
APl = Pgtt - Pt

t,n t,n
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Initialize Compute
Uppeo =0, U, , oaen_ Oden_ Kineo =Ky Kt‘u""ﬁo‘Km
_Ofen o Osen=0— Vi€ = OPte?o kleago IZ Csen=0
tn =Uin tn' mVKtank 0= Kt:a:_l N Ktank_ "Ktﬁaﬂ- kmnk Wm0 ket?mnl
800 =0, diy =4, A5 =d, F0=F
Ogon = Ouent Eapn =Espn-1Cogn = Coop:

k — k
5u”’n un-1 uu,n - L’Iu,n—l + Juu,n

ouy, =invK @ 1EEP‘*"‘ -PZ, —K 2% Buk ]

tt,n t,n-1 tun

ouf,, =invK £k 1[@3‘}"‘ 1] ||

]

uf, Ut +ouy,

intk _— T intk
P = 2 AL Ry

Rk — pext _ pintk
Pt,n - Pt,n Pt n

-1
invK £k —[K % from assembleq 2% ])

No

Rk
a8

Fig. 2.19 Flow chart of nonlinear analysis using flexibility-based method without iteration in
element level (1)
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(Iteration loop: e=1to# of e ements)
I

k=1 No

Yes
O0%, = A, DU, +.4,, DU,

A

M;n = “4o,e mur,n

1+£ek’n

y
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oL, =0y

en — Ye,

S

[

odf, =T[5,

odk, =F, ady,

dg, =dg, +ad,, dg, =dg; +ad;,

£k _ xtank-1 Tk
er,n_ s,.e,n B5ds,(-1-,n

@ fsk,e,n = f-sk.:n + Jf-sk.e n
_________________ *

Section deter mination
(Iteration loop: s= 1to# of sections)

Di—— |

~tank _ T tank
ek = Nj B4 N
s

wt,

f,s.e —’sen fse
- -1 — o~ ~
tank — | xtank tak — T tak,
ke,n _|:Ce,n :| 'ke,n _re [Re,n D]-e
tank — =T 3, tank
Ke,n _re |:Re,n D]-e
JRk — T Rk
de,n _ZNf,s,e |1~ |E\,‘ts,e
s

sen

FRKk _[tank rqRk fintk —fFk _fRk
fs,e,n - ks,e,n |:cue,n 'fe,n _fe,n fe,n
Tintk — T rgintk

fe,n - re |:.Ije,n
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\

Fig. 2.20 Flow chart of nonlinear analysis using flexibility-based method without iteration in
element level (2)
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Section determination
(Iteration loop: s=1t0 # of sections)
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Section constitutive law
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Fig. 2.21 Flow chart of nonlinear analysis using flexibility-based method without iteration in

element level (3)
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Step 2 Compute the incremental nodal displacement vector duy , and total nodal displacement
vector Uy, in structure level. Initially, iteration started from Eq. 229 and k = 1.

TF k=1,
k
5uu,n = Uyn — Uyn-1
k
e (2.29)
ko _ tan,k—17—1 ext ext tan,k—1 ¢k :
5ut,n - [Ktt,n ] : [ tn Pt,n—l - Ktu,n 5uu,n]
k k=1 k
Ui n ut,n + 5ut,n
Tk £ 1,
Rk _ pext int,k
Pt,n - Pt,n - Ptm
k+1 _ tan,k1—1 R,k
5ut,n = [Kttm ] 'Pt,n (2.30)
k+1 _ k+1 _ .k k+1
U, =Uao1t Aut’n =u;, +o0u,

where, superscript k is the iteration counter, sz the residual nodal force vector in struc-

tural level, AuFT! the total incremental displacement vector from the last converged step,

t,n
k+1

and du;,

the last incremental displacement vector.
Step 3 Loop over all the elements and determine their state.

e Determine the element nodal displacement vector in global reference.
If k=1,
56]2,n = Ab,e : 5u§n + Ab,e . 5uﬁ7n

Ifk+£1,
885, = Ay - duf,,

where, A; . is displacement extracting operator.
88, =80, + 08¢,

and Jg,n corresponds to 8¢ 1.

e Determine the element nodal displacement vector in local reference.

ods, =T, - 68",
d., =d.' +od,

en —

_0 —
and deﬂ corresponds to d¢ 1.

e Determine the element nodal displacement vector without rigid body modes in local
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reference.
6df, =T, od.,
Tk Th—1 Tk
de,n = de,n + 6de,n
_0 ~ — ~
and, dem and dg,n correspond to d¢,—1 and de—1.
Step 4 Determine the element nodal force vector without rigid body modes
ofF, = klorh=1. 5d¥
B =i ot

tan

and, £570 and KL +=0 correspond to f,,,_1, and ki .

Step 5 Start the section state determination by looping over the element’s sections. The total
number of section may vary from element to element. Therefore, the total number of
sections in an element is nlp. and it depends on the number of integration points in the
Gauss Lobatto quadrature rule.

e Determine the section force vector.

dok . =Ny, ofF

s,e,n e,n
k _ k-1 k
Us,e,n - Us,e,n + 60-876,77/

where, Ny . is the matrix derived from the force interpolation functions at the sth

section of the e element, and cr’;z% corresponds to 0 ¢ pn—1.

Step 6 Determine the section deformation vector. We again assume a general section. The
state determination of each section is performed in loop s.

k _ tan,k—1 k
5€s,e,n = Csen ' 6as,e,n
k _ k=1 k
es,e,n - ss,e,n + 5es,e,n
tan,k=0 k=0 ~tan
and, csen - and g5, correspond to €%, and €5 ¢ n—1.

Step 7 Determine the section tangent flexibility matrix and the internal section force vector.
If we assume that the section constitutive law is explicitly known, cf:‘;‘ & and a’s"glf are
both determined from e'é?,em. However, in elastic section, we need not to compute ci‘? o

again as it is identical to the initial section flexibility matrix € .
e Determine the residual section force vector.

Rk _ -k int,k
s,’e,n - as,e,n - as,e:n

62



Step 8 Determine the residual section deformation vector.

Rk _ Ctan,k Rk

s,e,n s,en s,e,n

£

Step 9 Determine updated element flexibility matrix and the residual element nodal displace-
ment vector.

The residual section deformation vectors and the section tangent flexibility matrices are
integrated along the element using on the complimentary principle of virtual work to
obtain the residual element nodal displacement vector and the element tangent flexibility
matrix.

s,en

SRk _ T Rk
devn - Z Nf7s7e ’ s ’ Wt87e
S

e,n - s,e,n

~tan,k __ T tan,k
c g Nﬁs,e -C “Nyge Whse
s

l;tan,k — [étan,k]—l
e,n

e,n
where, wt, . is the weight coefficient associated with the Jacobian at the sth section of
the et element.

Step 10 Determine the internal element nodal force vector and the element tangent stiffness
matrix.

fREk _ ytank 3Rk
fe,n - ke,n : de,n

cint,k _ ¢k Rk
fe,n - fe,n - fe,n

O
RS VS
KO =T KT
Kk =T7 k" T

Step 11 Determine the internal nodal force vector and the augmented tangent stiffness matrix.
int,k ;
P’ = LA F

e
tan,k T tan,k
KS,n - E Ab,e'Ke,n Ab,e

e

where, A;;Fe is force assembling operator.

Step 12 Compute the residual nodal force vector at the structural level from Eq. 228 We
then satisfy convergence with the residual nodal force vector.

Check convergence

o If Pf ;Lk is within the specified tolerance, go to next force increment.
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o If Pf ;Lk is not within the specified tolerance, k is updated to k + 1 and the next
Newton-Raphson iteration initiates. Eq. 2.30 in Step 2 through Step 12 are re-
peated until convergence occurs at the structure level.

2.3 Layer/Fiber Section

A major limitation of 1D framework elements is their inability to capture the varying stress
distribution across the section for nonlinear material as shown in Fig. 2.221 Whereas this can be
readily captured by continuum finite elements, it will come at a very expensive computational
price. Hence a natural approach is to adopt layer/fiber sections as shown in Fig. 2231

Stresso
Ur fl' (Er)
1
£ Strain?
(a) Strain distributioin (b) Stress-strain curve (c) Stress distributioin
(Bernoulli theroy)

Fig. 2.22 Stress-strain curve of nonliner material

The geometric characteristics of the layers/fibers are its location in the local y or y and z
reference system and the layer/fiber area A, (x), where subscript = is the 7" layer/fiber. The
constitutive relation of the section does not have to be explicitly specified, but is derived by
integration of the response of the layers/fibers, based on the uniaxial stress-strain relation of
the particular material, Fig. 223l Again, we assume that elements have small displacements
and deformations and that plane sections remain plane.

The layer/fiber strains are determined from the layer/fiber stress-strain relations. How-
ever, the determination of layer/fiber stresses from section forces is a statically indeterminate
problem for a section with more than two layers/fibers. The layer/fiber stresses cannot be
determined from the axial force and bending moment at the section, since there are only two
equilibrium equations in the uniaxial bending case for three or more unknown stresses. One pos-
sible solution is to assume a stress distribution within the section. This solution is described in
Fig. 2241 since layer /fiber stress-strain relations are typically expressed as explicit functions of
strain. Layer/fiber stresses and stiffnesses are thus determined from the layer/fiber stress-strain
relations. The internal section force vectors a’sng(:n) are computed from the layer/fiber stress
distribution and section tangent stiffness matrices kéag(ac) are assembled from the layer/fiber

tangent stiffnesses. In the uniaxial bending case, k{%'(z) takes the form

K@) =) | el | E(@)-Ae)  —E"(2) A(2) -y
roLo@) | B () Ap(@) oy B () Ap() -y
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Fig. 2.23 Layer/fiber sections-Distribution of control sections and section subdivision into lay-
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Fig. 2.24 Layer/fiber section state determination
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We note that this cross sectional definition allows us to easily specify longitudinal steel
reinforcement. Shear reinforcement, on the other hand, can not be explicitly modeled, however,
common practice is to assign modified properties to the confined concrete (Taucer et al. 1991).

2.4 Zero-Length 2D Element Formulation

As discussed in Sec. [LI.I.I] a methodology to account for nonlinearities in frame analysis
is lumped plasticity. In this approach we consider that plastic hinges (or their formulation)
contribute for the structural nonlinearity. Those hinges typically form at the end node regions.
Therefore, zero-length element can be used at the end of beam or beam-column elements.

2.4.1 Formulation
The element end deformations in the reinforced concrete are composed of two types:

e flexural deformation that causes inelastic strains

e clement end rotation which may be caused be the slip of longitudinal reinforcement in
reinforced concrete or plastic hinges in steel members.

Fig. [2.25] describes zero-length 2D element and examples for usage. Its formulation does
not account for coupling of the three possible degrees of freedom.

Constitutive law Section constitutive law is expressed as

Nx [EA]mn 0 0 Uz — Ugl
Vy = 0 [GA]tan 0 Uy2 — Uyl
M, 0 0  [ELJten 0.0 — 0.1
Os kgan s

where, [FA]", [GA]"" and [EL,]'" are tangent stiffnesses associated with axial, shear
and moment.

Equilibrium

Composing equilibrium equations between point A and point B in Fig. 2220,

[EA]tan ' (ﬂxl - ﬂx2)

N:cl =
Vyl = [GA]mn : (ﬁyl - ﬁy2) (231)
le - [E[z]mn . (gzl - 522)

Likewise between point B and point C,

r2 — [EA]tan . (ﬂm2 - ﬂxl)
[GA)™ - (By — Ty1) (2.32)

<l ==
I



a. N = [EA[*"[&,, wheres =T, -U,
b. V, = [GA]*"[},, wherey, =V,, -V,
c. M, =[El,]*" g, whereg, =6,,-6,,

—~

\_/'\

(a) Zero-length element

/
T
{
\

AN

::::::\r:_-:/, ,,,,,,,,,

(1) Wall

(2) Building

(b) Examples for usage

(3) Bridge

Fig. 2.25 Zero-length 2D element(1)
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x17 ¥ x

U, —>0A————-BO—>Nx,

Fig. 2.26 Zero-length 2D element(2)

Rewriting Eq. .31 and 2.32] to matrix form, the relationship between element nodal force
and displacement vector is given by

]jarl Uz
Vi Uyt
%Zl _ Emn 0.1
]j$2 ¢ Uz2
V2 Uy2
M22 Y, 922
N—_—— —
?6 dﬁ

T—tan . . P
where, k., is the element stiffness matrix in local reference.

[ [EA]ten 0 0 —[EA]tan 0 0 i
0 [GAJtan 0 0 —[GAJtan 0
—tan 0 0 [EL]ton 0 0 —[EL]ton
ke - _[EA]tan 0 0 [EA]tan 0 0 (233)
0 —[GAJtan 0 0 [GAJtan 0
0 0 —[EL]ten 0 0 [E1,]tn

2.4.2 Coordinate system in zero-length 2D element

Coordinate system in zero-length 2D element is same as in Sec. Z2.1.2] Fig. 2.2
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2.4.3 Element state determination with 2 Dimension and 3 degrees of free-

dom per node

With reference Fig. 227 we will examine one single step of zero-length 2D element for
nonlinear analysis.

Step 1:

Step 2:

Step 3:

Determine the section deformation vector, axial deformation, shear deformation and cur-
vature.

. . —k
For each deformation, we extract the associated components from d, ,,.

~k —k —k ok —k —k ok T
de,n = \fu’xl,e,n Uyl,e,n ezl,e,n ux2,e,n Uy2,e,n 9z2,e,nJ
k _ k k k T
ss,e,n - Lgm,e,ru ’Yy,e,ru (bz,e,nJ
k _ =k —k
Em,e,n - um2,e,n - ux2,e,n (234)
k _ =k —k
Wy,e,n - Uy2,e,n - Uy2,e,n (235)
k _gak —k
z.emn 922,e,n - 922,e,n (236)

where, Eq. 2Z34] defines axial section deformation, Eq. 235l the shear deformation, and
Eq. .36l the curvature.

Determine the section tangent stiffness associated with axial force-deformation, shear
force-deformation, and moment-curvature in the section constitutive laws. Section con-
stitutive laws modified with several variables in function of material constitutive law
associated with uniaxial stress-strain relationship can be used (Liel 2008). The internal
section force vector is determined next. If we assume that the section constitutive law is
explicitly known, k¥ and ¢2"'F are determined from e¥ . - However, in elastic section,
we need not to compute kéag f again as it is identical to the initial section stiffness matrix
ke

For an elastic section,

tan _
ks,e,n - k376
T,e,n 6:(:,e,n
Vznt,k _ tan k
y,e,n - s,en ’Y%,e,n
Mint,k (25
z,en z,e.n
~—_———
. k
int,k g
Us,e,’n s,e,n

tan,k . . . . . .
where, k&2 is the section tangent stiffness matrix at k™" iteration.

Determine the internal element nodal force vector and the element tangent stiffness matrix
from Eq. 2.33

f — LNZnt’k th,k Mznt,k _Nmt,k _Vyznt,k _Mmt,k T

e,n z.emr Yyen s zen z,em em z,en
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70

Fig. 2.27 Flow chart of zero-length 2D element for element state determination




[ EALE 0 0 —BALF 0 0 ]
0 GAL» 0 0 —GALmF 0

dank _ |0 0 BISE 0 0 -BL
¢ —EALmk 0 0 EALF 0 0
0 —G ALk 0 0 G AL+ 0

L0 0 —EBIE 0 0 EIME

k

Ttan,k . . i s
where, k. ,,” is the element tangent stiffness matrix in local reference.
k)

. int,k tan,k
We determine Fe™ and K™

int,k T Fint,k
Fe,n = I’ - fe,n

tan,k  __ T gtank
Ke,n = I ke,n -Le

2.5 Zero-Length Section Element Formulation

Zero-length section element is analogous to the zero length element, however, it uses lay-
er/fiber. This element enables us to model the shift in center of section rotation which may
occur (in bar-slip for example). The element is formulated on the basis of coupled axial force

and moment.
Fig. 2.28] describes zero-length 2D section element.

1~
\_/'\

Fig. 2.28 Zero-length 2D section element(1)
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2.5.1 Formulation

Constitutive law Section constitutive law is expressed as

tan tan — —
Ng _ s,11 ks,12 Uzr2 — Uzl
- tan tan : il 0
M, 521 Koo 0.0 — 0.1
os Kktan €s

where, k1" is the section tangent stiffness matrix obtained from layer/fiber state deter-

mination.

Equilibrium Zero-length section element is based on Bernoulli beam theory.

le’lTxl

.A.____

///’
l, Nl—zl’e_zl’_->
\\\lexl,—xl —> & —— - —ce—> N
Sy
Z
I\ﬁzlveizlr_-> ’DMZ

-2 —> N
B X

Fig. 2.29 Zero-length 2D section element(2)

Composing equilibrium equations between point A and point B in Fig. 2.29]

~ t — — t
Nq:l = kg?lnl ' (uarl - uq:Z) + ks?lnz

le = k?fznl : (ﬂrl - ﬂ:ﬁ) + kz?gng
Likewise between point B and point C,

N t — — t
NxZ = kg?lnl ' (UJ:Q - uq:l) + ks?lnz

Vi t — — t
M, = k:s(,l2nl . ('LL;L-Q — uxl) + ks?QHZ

. (gzl —
(0.1 —

. (522 —
(0.0 —

ZZ; (2.37)
gzl)
7 (2.38)

Rewriting Eq. .37 and 238 to matrix form, the relationship between element nodal force
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and displacement vector is given by

le Uz
0 0
le o Etcm 521
N:c2 ¢ Ug2
0 0
\ Mz2 y, 922
%,_/ 5,_/

fe de

T—tan . . P
where, k., is the element stiffness matrix in local reference.

K0 KR K 0 K ]
0 0 0 0 0 0
tan kiagl 0 ktsa2nz —kéa2n1 0 —k?%
Bl R R A (239
0 0 0 0 0 0
Km0 KR K 0 K

2.5.2 Coordinate system in zero-length 2D section element

Coordinate system in zero-length 2D element is same as in Sec. Z2.1.2] Fig.

2.5.3 Element state determination with 2 Dimension and 3 degrees of free-
dom per node

With reference Fig. 2.30], we will examine one single step of zero-length 2D section element
for nonlinear analysis.

Step 1: Determine the section deformation vector, axial deformation and curvature.

. . —k
For each deformation, we extracts the associated components from d. ,,.

—k _k —k _k —k T
de,n = Luml,e,n 0 ezl,e,n uw2,e,n 0 022,e,nJ
k _ k k T

Es,e,n - Iﬁx,e,rw gbz,e,nJ
k _ =k —

6gv,e,n - uw2,e,n - um2,e,n
k gk —k
z.emn 922,e,n - 922,e,n

Step 2: Determine the section tangent stiffness associated with axial force-deformation and moment-
curvature using layer/fiber state determination in Sec. 23] Determine next the internal
section force vector. If we assume that the material constitutive law is explicitly known,

KL ¥ and ai"etﬁ are determined from E’;e’n. However, in the section with elastic material,

we need not to compute k’;‘? f again as it is identical to the initial section stiffness matrix

ke

73



v
Element determination for zeralength 2D sectionelement
!

k=1 No
Yes
00, = Ay [BUL, + A, 20U,
a-a-ek,n = Ab,e.a—u:(,n ~
i
&, = 8%+ o,

1]
od¥, =T +odf

dy, =dg, +adg,
¥
Section deter mination

kK _=k  _—k

Ek — ‘Ex,e,n - ux2,en ux2en

sen — gk _nk
@(,e,n - gyzie.n eylen

L]
oMk = | Ntk g intk T
sen x.en zen
— . . . : T
intk — | _pnpintk _ int,k intk intk
fe,n _L Nx,e,n 0 I\/lz,e,n Nx,en 0 MzenJ
[ tan tan
ktank _ ,e,n,11 enji2
sen Kan K tan
L s.en,2l 'sen,22
tan tan _| tan _tan ]
.e,n, 11 0 en,l2 ,e,n,11 0 ksen 12
0 0 0 0 0 0
tan tan _|L tan _L tan
Rtank _ ks,e,n,21 0 en,22 ksem 21 0 ksen ,22|
en T | _tan 0 -k&n tan 0 tan
.en,ll enl2 en 11 en ,12
0 0 0 0 0 0
_ | tan _ | tan tan tan
L ks,e,n,Zl 0 en,22 kser,l 21 0 en 22|

tank — =T [, tank
Ke,n _re'ke,n 're

intk — =T Fintk
Fe,n _re.fe,n

Fig. 2.30 Flow chart of zero-length 2D section element for element state determination
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If we have a section with elastic material, then

tan _
ks,e,n - kS,e

int,k k
Nx,e:rlzg _ ktan { gg]vg,e,n }

int - s,e,n
Mz,e,’n H ¢z,e,n

- 2 N————

aénet’ﬁ E?,e,n

tan,k . . . . . .
where, ki'e is the section tangent stiffness matrix at k™" iteration.

Step 3: Determine the internal element nodal force vector and the element tangent stiffness matrix
from Eq. 2.39

wint.k int,k int,k int,k intk T
fe,n = \‘Nx,e,nv 07 Mz,e,n ) _Nx,e,nv 07 _Mz,e,nJ
- tan,k tan,k tan,k tan,k b
s,e,n,11 0 ks,e,n,12 _ks,e,n,ll 0 — s,e,n,12
0 0 0 0 0 0
tan,k tan,k tan,k tan,k
Etan,k _ ks,e,n,21 0 ks,e,n,22 _ks,e,n,21 0 — s,e,n,22
en T _ytank 0 _ktan,k ktan,k 0 tan,
s,e,n,11 s,12e,n, s,e,n,11 s,e,n,12
0 0 0 0 0 0
tan,k tan,k tan,k tan,k
L Ps.en,21 0 _ks,e,n,22 ks,e,n,2l 0 s,e,n,22 4

—tan,k . . ..
where, k., is the element tangent stiffness matrix in local reference.

. int,k tan,k
We determine Fe ™ and K™

int,k T Fintk
Fe,n = I 'fe,n

tan,k T Ttank
Ke,n = I 'ke,n :

2.6 Element Force

Structures should resist applied external forces. Applicable external forces of an element
basically are divided into three forces; element nodal forces, element distributed forces and
element nodal displacement such as settlements. These external forces are shown in Fig. 2371

Element nodal forces shown in Fig. 2311 (a) are applied directly at the corresponding
degrees of freedom. However, so far we have not accounted for the element forces w.(z) (as
defined in Eq. 2I4)) shown in Fig. [Z31] (b). Those can be lumped as concentrated forces at
suitably selected arbitrary nodes, and the degrees of freedom at these and the actual joints
are treated as the unknowns. For element distributed forces, we should consider the equivalent
fixed end action fzea of element distributed forces in structural level irrespective of whether

we use the stiffness-based or the mixed stiffness-based and flexibility-based method. fzea on
element distributed force of an element is based on stiffness-based formulation.
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(a) Element nodal forces in 2 dimension (b) Element distributed forces in 2 dimension| (c) Element nodal displacements in 2 dimensiq

Fig. 2.31 Forces of an element

N 1—% 0 0 L% 0 0
_ We, ()
wele) = { We,y(2) }
=fea Le
£, = Ny(z) - we(x)dz (2.40)

For a uniformly distributed force w,(x) = { Zx }, then Eq. 240l reduces to the classical
y

Wy - Le wy - Le wy-Lg Wy - Le wy - Le _wy'LzJT (2.41)

2 2 7 o127 2 2 7 12 ’
which are shown in Fig. 2.321

Element nodal displacements considered as external forces are shown in Fig. 2.31] (c). Those
are applied as constraint degrees of freedom.

Let us consider the equilibrium equation considered by element nodal forces, element dis-
tributed forces, and element nodal displacements in an element shown in Fig. 2.33]

If the element has elastic section, we obtain equilibrium equation, Eq.

B=1

_‘7 — -
v, R o e
e e
V?l 0 12Lb;1z 61;;212 0 12Lb;1z 6%@ 0 wy-Le
Y 2
Vil 0 6E1 4ET, 0  _6EL  2EL 7’ wy-L?
;o= EA Lz Le EA Lz Le : 3 - 1z
N, o U T R w, ot
—7 0  _I12BL. _GEL 0 12EI, _6EL ATY wy-Le
Vo L3 .2 L3 L2 —.Y 2
7 0 6EI, 2E1, 0 _6EI,  4EL 0 wy- L2
M o L L2 L. L2 Le 22 )
— " —-
—— ~ — ~
?e ke de fiea
(2.42)

where, superscript 7 indicates unknown forces and displacements, and v' known forces and
displacements.
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(a) Element distributed forces
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(b) Equivalent fixed end action on element disttéxliforces

Fig. 2.32 Fixed end action of an element

Fig. 2.33 Example for equivalent fixed end action

7




Table 2.1 Comparison on maximum excitation force of Y direction at point B
(F: Flexibility-based with iterations, FNI: Flexibility-based without iterations, NR:
Newton Raphson, IS: Initial stiffness)

Experiment | F, NR F, IS | FNI, NR | FNI, IS | Castem
Maximum force 235,000 222,232.7 | 221,958.2 | 234,852.6 | 239,021.9 | 219,469
Error on maximum force - 5.43 % 5.55 % 0.06% 1.71% | 6.61 %

2.7 Comparion
Comparing flexiblity-based beam column with element iterations and without element iteation

in Sec. 2.2.2] here are examples.

2.7.1 Example 1
Example 1 in Fig. 234 has layer sections and elastic sections.

0.5 (kip/in) to 6.0 (kip/in) increased by 0.5 (kip/in)

A

47 s
L
E =29000 ksi

A =100 irf
Iz = 833.33 it

3 3

@

®
{|

120in

L,
H><—J

10@1in

180in

< H,—»:D

@

10in

Zi%—»x

Section A-A

D : Element
O : Node

288in

Fig. 2.34 Example 1: Frame with layer sections and elastic sections

2.7.2 Example 2

Example 2 in Fig. 237 has layer sections and anisotropic 1D damage material for concrete
and hardening material for steel.
Table. 1] describes the error on maximum excitation force of Y direction at point B.

2.7.3 Example 3

Example 3 in Fig. 239 and [2.39 has layer sections and modified Kent-Park material for
concrete and modified Giuffre-Menegotto-Pinto material for steel.
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Displacement of Y direction at node 2
due to element distributed force of element 2

——Sap2000 -#-Stiffness-based -#—Flexibility-based(No iterations) —*Flexibility-based(Iterations)
7

o

5 \I\-
T

; ~]

/

Element distributed force [Kip/in]

-0.06 -0.05 -0.04 -0.03 -0.02 -0.01 0
Displacement [in]

Fig. 2.35 Example 1: Displacement of Y direction at node 2 due to element distributed force
of element 2

Displacement of Y direction at node 2
due to element distributed force of element 2

——Sap2000 -#-Stiffness-based —#*—Flexibility-based(No iterations) —Flexibility-based(Iterations)

7

5 -\“\
T

T

Element distributed force [Kip/in]
S

-0.06 -0.05 -0.04 -0.03 -0.02 -0.01 0

Displacement [in]

Fig. 2.36  Example 1: Reaction of Z direction at node 1 due to element distributed force of
element 2
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Fig. 2.37 Example 2: Beam with layer sections, and anisotropic 1D damage and hardening
material
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Force-Displacement of Y direction at point B

——Flexibility-based(Newton-Raphson, Iterations) ~——Flexibility-based(Initial stiffness, Iterations)
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Fig. 2.38 Example 2: Force-displacement curve of Y direction at point B
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Fig. 2.39 Example 3: Beam with layer sections, and modified Kent-Park and modified Giuffre-
Menegotto-Pinto material
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Bilinear material

ConcretelLinearTensionSoftening material

Ets 21 kN/mn?
‘f‘ Density 0
fc -0.029 kN/mnt
- epsilonc -0.00221 f
£l ’ fcu -0.0048 kN/mrf 4
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H * > &
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i JE, f, ;
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-, = R PR
P&, E 210 kN/mn? T w
Density 0 :
fy 0.29 kN/mn? :
b 0.01 :
al 0 AR
22 55
a3 0
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Fig. 2.40

Example 3: Material properties on modified Kent-Park and modified Giuffre-

Menegotto-Pinto material

Force-Displacement of Y direction at node 2
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Fig. 2.41 Example 3: Force-displacement curve of Y direction at node 2
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Moment at node 2 and 5 due to excitaion force

—o—Flexibility-based with iterations, node 2~ Flexibility-based without iterations, node 2

~#—Flexibility-based with iterations, node 5 =>¢=Flexibility-based without iterations, node 5
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Fig. 2.42 Example 3: Moment at node 2 and 5 due to exciation force
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Chapter 3

CONSTITUTIVE MODELS

This chapter will describe the various constitutive models used in Mercury. All of them are
limited to uniaxial stress-strain relations as they will be used in conjunction with the uniaxial
elements described in the previous chapter. Most of these models are well established yet some
of them being poorly documented in recent literature, this chapter will clearly describe them.
Hence particular attention is given to a rigorous description and validation problems will be
presented in chapter ?7. One relatively new model for concrete is presented, it is an anisotropic
damage mechanics model particularly well suited for real time hybrid simulation.

3.1 Steel Models

This section describes various steel models shown in Table. .11

3.1.1 Classical plasticity

Most metallic materials, when subjected to high stress level, exhibit plasticity behavior, i.e.
when force is removed, the body does not return to its original shape, but has some permanent
plastic deformation associated with it.

Materials such as steel or concrete, commonly used in structures, show yielding and plastic
deformation. A typical uniaxial stress-strain curve for steel is shown in Fig. Bl Following
a linear response, steel exhibits an abrupt change in stiffness which occurs at the yield point.
Beyond yielding, a permanent deformation is introduced upon unloading. This behavior can
be idealized by a bilinear stress-strain relationship with two slopes, the second being called the
tangent modulus E". After reaching the yield point, the slope could be smaller, equal, or
greater than zero as shown in Fig. B.2la).

Fig. B2(b) illustrates on elastic-perfectly plastic situation, that is after reaching the yield
stress, the material starts flowing plastically without any further increase or decrease. The
specimen is first loaded to point A, reaches its yield stress, and then flows plastically at point
B, we unload the specimen until we reach a zero-load condition at point C. However, since we
have loaded the specimen beyond the yield point, we observe that a permanent deformation or
a permanent strain has been introduced in the material. We denote this permanent strain in
one dimension the plastic strain P which is permanent deformation.
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Tension test for steel
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ol __ __ _______ P
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| | ! "
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elastic yield Strain hardening necking

Fig. 3.1 Uniaxial stress-strain curve for steel
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(a) Idealization of stress-strain response (b) Stress-strain response of
elastic-perfectly plastic material

Fig. 3.2 Idealized stress-strain response hardening material
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Table 3.1 Steel models

Hardening
Steel Models - - - Heuristic
Isotropic Kinematic
Classical Plasticity O O
Bilinear O X
GMP @) O O

where GMP is Giuffre-Menegotto-Pinto model modified by Fillipou et al.

The total strain € can thus be decomposed into an elastic strain ¢ and a plastic one.

e=¢+¢€P
c=F-¢° (3.1)
o=FE-(e6—¢€P)

Eq. Bl describes the stress-strain relation with plastic behavior for the elastic-perfectly plastic
uniaxial loading conditions.

Next we will present the mathematical structure of two classical phenomenological isotropic
hardening model (Regueiro 2007).

3.1.1.1 Isotropic hardening model

Formulation of this constitutive law is based on classical theory of plasticity and is thus
based on the following considerations:

Helmholtz free energy The general format of associated dissipative models starts from the
Helmholtz free energy expansion and the dissipation inequality. Expanding the free energy
into two terms, an elastic and a plastic one, we have

pr B, E) = get Btk € H

Elastic Plastic

where p is density, ¢(e°, &) the Helmholtz free energy function in terms of elastic strain
€ and a strain-like internal variable &, E elastic modulus, and H plastic modulus.

Fig. B3ldescribe the elastic modulus E and plastic modulus H where the tangent modulus
is

tan __ E-H
E+H

The elastic and plastic stress, o and q respectively, are give by Eq. and Eq. B3l

Linear elasticity :0 =p- g:i =FE-&° (3.2)
Plasticity :q 9% _ H-¢ (3.3)

:p.a_f_
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oL __ do

s > ¢

(a) The tangent modulus in elasto-plasticity curve (b) The plastic modulus

Fig. 3.3 The tangent modulus for isotropic hardening model

where, g is identical to the initial yield stress o, at the initial state.

Assuming F and H constant, we can rewrite Eq. and Eq. in rate form as

6 =E-é¢ =F-(¢—¢&P) (3.4)
q =H-¢ (3.5)

Yield function The yield function is defined as

floyk) :=lo| —q

Thus if f(o, q) < 0, then the stress is in the elastic domain. Alternatively, if f(o, q) =0,
the stress reaches its plastic limit.

Elastic domain @

Evolution

®

Evolution of elastic domain

Fig. 3.4 The evolution of elastic domain in isotropic hardening model

Fig. B4 shows the evolution of the elastic domain. First the strain reaches yielding
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(qop = o0y), and then at that point further increase in strain results in an expansion of q
this will in turn expand the elastic domain.

Evolution equation We define plastic a flow rule by

%

o (3.6)

el =7
where, ¥ is plastic multiplier or consistency parameter, and ¢ is the plastic potential
function in terms of ¢ and q.
Assuming g(o, q) = f(o,then q), % = sign(o) where sign(o) is 1if o > 0 or —1if o < 0.

Then, we rewrite Eq. as
eP =4 . sign(o)

or
T=1e"20

Next, we consider the evolution of the strain-like internal state variable associated with
plasticity. .
g = /7 ' h(O’, q)

where, h(o, q) is a dimensionless hardening function. For simplicity and under the as-
sumption of elasto-plastic hardening material with bilinear curve, we assume that

99 _

h(07 q):_aq_l

Therefore, we can rewrite Eq. B4 and Eq. as follows

— B (¢~ -sign(0)

and

q:H.f:Y.h(U’ q) (3.8)
=H- 5

Kuhn-Tucker conditions and consistency condition In the elastic regime, the yield func-
tion f must remain negative and the plastic multiplier is zero. On the other hand, during
plastic flow the yield function f must be zero while plastic multiplier is positive. This is
succinctly expressed by the so-called Kuhn-Tucker condition,

Elastic loading and unloading : f <0, =0 (3.9)
Plastic loading : f=0, ¥>0 (3.10)
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Eq. and Eq. B.I0 can be put together.
F<0, 420, f-4=0 (3.11)

The consistency condition precludes us from going beyond the yield surface as we must
stay on it, thus

floo =5 S48

do Ot ' dq ot
TN 12
= 90 aq 17

Finally, we need to evaluate tangent modulus E'". Substituting Eq. B.7 and Eq.
into Eq. B.12] we obtain

g.E.(ﬁj_;}/ ag>+8_f.H.;y.h(g7 q) =0

do do) " dq
Therefore,
o g.¢
Jdo
V=5 50 (3.13)
a—g E a—g—a—(J;~H h(o, q)

Substituting Eq. BI3l into Eq. B, we obtain an explicit expression for the incremental
stress,

E
of 2.0
:(E—af ?’gf'% ).é
%'E'a—g—m']{'h(@ q)
E

For elasto-plastic hardening material with bilinear curve in one dimension,

sign(o) - E - €
 E+H

the tangent modulus reduces to

sign(o) - E? - sign(o)

Etan:E_
sign(o) - £ - sign(o) + (=1) - H - (1)
2
=F — £
E+H
E-H
 E+H
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3.1.1.2 Combined isotropic and kinematic hardening model

We describe isotropic and kinematic hardening model. Finally, we summarize the major
equations governing plasticity.

o g

A A
o, o,

) > £ 5 > £

- \> Bauschinger Effect
o 40_ ~ 4 —=7(Kinematic hardeing)
<« «—’ —(:—;7::) Isotropic hardening
(&) Isotropic hardening (b) Kinematic hardening

Fig. 3.5 Isotropic and kinematic hardening plasticity

Yield surface of isotopic hardening plasticity is symmetric about the origin at ¢ = 0, Fig.
B0 a), whereas for kinematic hardening plasticity the yield surface is unsymmetric, Fig. B5I(b).
This lack of symmetry is caused by the classical Bauschinger effect. Hence, we will thus enrich
the helmholtz free energy function with strain-like internal state variables for combined isotropic
and kinematic hardening.

pr B ) =5 e Bt £ H g

Elastic Plastic

where, € is a strain-like vector of internal state variables, and H is the hardening matrix.
— Kiso fkaT
Hiso 0

where, £%° is a strain-like internal state variable of isotropic plasticity, a strain-like internal
state variable of kinematic plasticity, H**° the isotropic plastic modulus, and H*" the kinematic
plastic modulus. The thermodynamically stress-like vector of internal state variables is thus
given by

3
H

ékin

" =H-¢
— {Hiso . §i807 szn . gkszT
— Ulz'so7 qkinJT
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o n

where, ¢**° is an isotropic stress-like internal state variable and q*" a kinematic stress-like
internal state variable. Therefore, the rate form of stress-like vector of internal state variables
becomes

¢ =H-¢
_ LHiso . éiso’ szn . gkaT (314)
_ {qiso qkszT

Having stress-like internal state variable q*°, we redefine the yield function as
flo,q%) = |o = "™ — g™

As mentioned above, if f(o, qf) < 0, the stress is in the elastic domain, otherwise, if f(o, qf) =
0, the stress reaches plasticity. In one dimension, we can assume g(o, q"*°) to be the same as

fo, a*).

do" - dly” g +d

|
0
qkin . qloso @ qkin + q’)so
|

Initial elastic domain @

@ Evolution of §"

Evolution of elastic domain

Fig. 3.6 The evolution of elastic domain in isotropic and kinematic hardening model for H*° =
0 (isotropic perfectly plastic) and H kin 0

Fig. depicts the evolution of the elastic domain for H**° = 0 (isotropic perfectly plastic)
and H*™ > 0. The size of elastic domains is the same after evolution.
Finally, we will define the evolution of £ as

§:=%-h(o, ¢°) (3.15)
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where, h(o, q¢ ) is a dimensionless hardening function.

_9g
oqt
Jg Jg
= |- I

h(O’, qf) =

aqiso ) aqkin

= [1, sign(o —q"™)|"
Combining Eq. BI4l and Eq. BI5]
¢ =H-{=H-% h(o, ) (3.16)

To determine E'" we consider the consistency condition given by Eq. B.12] and where ¢
has now been replaced by ¢¢

(o, qﬁ)zg—i.wrg—(i;.qf:o (3.17)

Substituting Eq. B.7 and Eq. B.I6] into Eq. B.17,

of . . Og of .
L p.(le—s. 2 4 H.%-h £ =0 3.18
5 <6 780>+aq§ ¥-h(o, q°) (3.18)
4 is determined from Eq. B.I8]
o g.¢
Jdo
5 (3.19)
o5 -5~ gae - Hohlo, o)

From Eq. B.7)

E
of 2.9
(s 8 . p2. % g
9 .95 _ L H . h(o, o)
E

Thus, for elasto-plastic hardening material with bilinear curve, Eq. B.19 reduces to:

_ sign(oc —q¢") - E ¢
- E 4 Hiso Hkin
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Finally, we determine the tangent modulus, E/",

of [ p2.9%
Etan:E_a a8cr - Jdo
a—g'E'a—g—a—oﬂ‘H'h(@ a)

Sign(a _ qkin)Z . E2

. ) . ) Hiso 0 1
51gn(a - qkzn)2 B - I__17 —51gn(0 - qkzn)J |: 0 szn :| { Sign( qkin) }

g —

—F—

E - (Hiso + szn)
= E+Hiso+Hkin

3.1.1.3 Determination for isotropic and kinematic harding parameters

Fig. B.7 illustrates the procedure to determine uniaxial stress o and tangent modulus Ef"
from uniaxial strain e.

3.1.2 Bilinear model with isotropic hardening

Whereas the proceeding model is rooted in plasticity theory, its implementation may be
problematic. Alternatively, a phenomenologically similar model can be derived based on (Filippou,
Popov and Bertero 1983) and as implemented in (Mazzoni, McKenna, Scott, Fenves and
et al. 2006).

3.1.2.1 Stress-strain relation

Instead of determining the E'" with H in Sec. B.I.I.] the bilinear model computes it
through a strain-hardening coefficient b which is the ratio of the post-yield tangent modulus
E'" and the initial elastic modulus E, and only considers isotropic hardening with Eq.
and Eq. B2T] (Filippou et al. 1983). Fig. B8 describes this bilinear model.

Etan:b‘E

To account for the evolution of elastic domain in isotropic harding, a stress shift oa is
determined as follow:

e If the incremental strain Ae changes a positive value into a negative one:

; 0.8
gmaz _ omin
St ()

2. ag - -y (3.20)
oan =AY g, (1-1)
e If the incremental strain Ae changes a negative value into a positive one:
in N 0.8
gmax _ omin
AP =14a3 [ ———
3 < 2-ay- e, ) (3.21)

on=A" g, (1-0)
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Hardening model determination
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Fig. 3.7 Determination for isotropic and kinematic hardening model
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where, a1 and a3 are isotropic hardening parameter which reflect an increase of the com-
pression yield envelope through a fraction of the yield strength after a plastic strain as - U—Ey
and tension yield envelope as a fraction of the yield strength after a plastic strain of ay - 0—5
as and a4 are isotropic hardening parameter with respect to a; and as, and €4, and &4, are
the strain at the maximum and minimum strain reversal point. Limiting factor of this model is
that a1, as, ag and a4 must be determined through curve fitting of the model with experimental

results. Default values are a; = 0, az = 55, ag = 0, and a4 = 55 in (Mazzoni et al. 2006).

Stress/
Section force
A
E® =bE
o,—-
|
|
E
|
1 -
: Strain/
| Section deformation
I
I
|
g —a'y
E® =b[E

Fig. 3.8 Bilinear model

3.1.2.2 Determination for bilinear model

Fig. shows the procedure to obtain uniaxial stress ¢ and tangent modulus E*" from
uniaxial strain e.

3.1.3 Giuffre-Menegotto-Pinto Model Modified by Filippou et al.

This section is based on doctoral dissertation of Yassin (1994).

3.1.3.1 Stress-strain relationship

The reinforcing steel stress-strain behavior is described by the nonlinear model of Menegotto
and Pinto (1973), as modified by Filippou et al. (1983), to include isotropic strain hardening.
This model introduces smooth curve to describe similar behavior to experimental one instead
of bilinear curve.

The model presented in Menegotto and Pinto (1973) starts from the following emperical
form of the stress-strain relation which is found to be close enough to experimentally determined
ones.

(1-0b)-¢&*

cf=b-¢ +W (322)
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Bilinear model determination
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Y

min — ~min

gr.n =& n-1

wheree™" =

rn=0

max — max
0, Ep &1

Shift!, = Shift",_,, where Shift _,= 1, Shiff, = Shfft_, ,&ere Shiff _,= :
Forceflag , = Forceflag, , , where Feeflag , = O

wherg 1¥,= 0

v

Aé‘ = gr,n - gr,n—l

— >0 _——

Yes

E:,a: = bY EET'

6 =ETE

rn

g
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y
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if Forceflag , = C

else if (Forceflag, = 1 ande, , <
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Fig. 3.9 Determination for bilinear model
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where,

6* _ € — Erev
80 - 67‘61} (3 23)

* 0 — Orev

0= —

00 — Orev

The tangent modulus E" is obtained by differentiating Eq. B.22 and B3.23]

do 09— 0pepy do*
plon — — — =T, 3.24
de €0 — Epey  de* ( )

where,

(3.25)

do* 1-b e
| 1=
de* (1+e*B)l/R 14 xR

T T T
| | |
' | |
q ( rev? revl) |
2000~~~ 0f D) e R =20
| |
| |
| |
‘® 1000F----——d-—f- oo f o oo ===
o | |
s ! !
: L
g o i i
n | |
| |
| |
21000 === == fim = m e e e O bo o
: |
| |
| | |
-2000 ! b Lo
| : :
-0.04 -0.02 0 0.02 0.04 0.06 0.08
Strain [mm/mm]

Fig. 3.10 Menegotto-Pinto steel model
(Yassin 1994)

In Fig. B.I0, Eq. represents a curved transition from a straight line asymptote with
slope E (a) to another asymptote with slope E" (b), 0., and €., are the stress and strain at
the point of strain reversal (point A), which also forms the origin of the asymptote with slope
E (a), and ¢ and g( are the stress and strain at the point of intersection of the two asymptotes
(point B).

b is the strain hardening ratio between slope E'®" and E, and R is a parameter that in-
fluences the curvature of the transition curve between the two asymptotes and permits a good
representation of the Bauschinger effect. As indicated in Fig. BI0, og, €9, 0rey and e,¢, are
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Fig. 3.11 Definition of curvature parameter R in Menegotto-Pinto steel model
(Yassin 1994)

updated after each strain reversal.

In Fig. BI1] R is dependent on the absolute strain difference between the current asymptote
intersection point (point B) and the previous maximum or minimum strain reversal point (point
C) depending on whether the current strain is increasing or decreasing, respectively. There are
two reported expression for R(&):

e Menegotto-Pinto original model (Menegotto and Pinto 1973),

cRy - §

R(&) =Ry — ———= 3.26
(&) = Ro Ry 1€ (3.26)
e Steel2 in OpenSees (Mazzoni et al. 2006),
cRy - ¢
R =Ry|1————= 3.27
(§) = Ro < P §> (3.27)

where, Ry is the value of the parameter R during first loading, and ¢R; and cRs are experi-
mentally determined parameters to be defined together with Ry. £ can be expressed as

€™ — ¢

¢ = (3.28)

€y

where, £ is the strain at the previous maximum or minimum strain reversal point depending
on whether the current strain is increasing or decreasing, respectively. gg is the strain at the
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current intersection point of the two asymptotes.

As shown in Fig. B0, both €™ and €q lie along the same asymptote and ¢, is the initial
yield strain. Fig. B.I1] shows how & is updated following a strain reversal.

Some clarification is needed in connection with the set of rules for unloading and reloading
which are implied by Eq. to 328 allowing for a generalized load history. If the analytical
model had a memory extending over all previous branches of the stress-strain history, then it
would allow for the resumption of the previous reloading branch, as soon as the new reloading
curve reached it. However, this would require that the model store all necessary information to
retrace all previous incomplete reloading curves, and this is clearly impractical from a computa-
tional standpoint. Memory of the past stress-strain history is therefore limited to a predefined
number of parameters, which in the present model are:

1. stress and strain at the last state of the model

2. stress and strain at the last state reversal point

3. stress and strain at the last asymptote intersection point

4. flag indication whether the last branch is ascending or descending
5. strain at the previous minimum strain reversal point

6. strain at the previous maximum strain reversal point

As a result of these restrictions reloading following partial unloading does not hit the original
curve following unloading started, but, instead, continues on the new reloading curve until
reaching the monotonic envelope. However, the discrepancy between the analytical model and
the actual behavior is typically very small, Filippou et al. (1983).

The above implementation of the model corresponds to its simplest form, as proposed by
Menegotto and Pinto (1973): elastic and yield asymptotes are assumed to be straight lines, the
position of the limiting asymptotes corresponding to the yield surface is assumed to be fixed at
all times and the slope E remains constant, Fig. 310l

In spite of the simplicity in formulation, the model is capable of reproducing well experi-
mental results and its major drawback stems from its failure to allow for isotropic hardening.
To account for this effect Filippou et al. (1983) proposed a shift of op and ¢y in the linearly
yield asymptote as follows:

e If the incremental strain Ae changes a positive value to a negative value:

; 0.8
gmaz _ cmin
A ()
2. az - -&y

Oy AN + Etan “Ey - AN — Opey + E- Erev (329)
E — Etan
00 = —ay, - AN L B (g, ¢, - AN)

o =
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e If the incremental strain Ae changes a negative value to a positive value,

max __ -min 0.8
AP — 1 —|- as - <i>
2. Ay - -Ey
Oy~ AP — ptan . Ey - AP — Orev + E - €rey (330)
€0 = E — Etan

oo =0y, AP + B (¢, — g, - AT)

where, a; and ag are isotropic hardening parameter which reflect an increase of the compression
yield envelope through a fraction of the yield strength after a plastic strain as - U—Li’, and tension

yield envelope as a fraction of the yield strength after a plastic strain of as - 2. as and a4 are

=
isotropic hardening parameter with respect to a1 and ag, and &,,4, and &,,;, are the strain at
the maximum and minimum strain reversal point. Limiting factor of this model is that ay, aso,
a3z and a4 must be determined through curve fitting of the model with experimental results.

Default values are a1 = 0, ag = 55, a3 = 0, and ag = 55 in (Mazzoni et al. 2006).

3.1.3.2 Determination for modified Giuffre-Menegotto-Pinto Model

Fig. B.12 to B.I5 show the procedure to obtain uniaxial stress ¢ and tangent modulus E"
from uniaxial strain €.

v

Giuffre-Menegotto-Pinto Model Modified by Filippaat al. determination

g, B O'ini r
ErSh = q |:Er"":‘y,r = Eyv" 7|f (a.ini,r # 0)7then Eini,r = ? ar]d"'gr,n = ‘gr n +gini r
Erev,r,n = grev,r,n—l' Wheregrevr n=0 = O'Jrevr n = Jrevr n-1°? Whergrwn n= 0: 0
EO,r n = ‘90; n-1 Wherefo[ n= 0: O’U a.n = Uo,r n-1 Whereaor n= 0: O

g . v v o,
& =g, whereg "2 = Ey" £N"=g 0, where, 1 = - Ey"
Epen = Epen-p Wheres = 0
Forceflag , = Forceflag, , , where Forceflage 0
Y
| A"'::“:r,n _Er,nfl |
if Foceflag, = C | else if Foceflag, = | else if Foceflag, =—

Fig. 3.12 Determination (1) for Giuffre-Menegotto-Pinto Model Modified by Filippou et al.
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if Foceflag, = C

min _
&y =-0, 1E

r,n
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— omin
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Fig. 3.13 Determination (2) for Giuffre-Menegotto-Pinto Model Modified by Filippou et al.
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else if Foceflag, =

if Ae<0 else if Ae > C
& , g
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Fig. 3.14 Determination (3) for Giuffre-Menegotto-Pinto Model Modified by Filippou et al.
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Fig. 3.15 Determination (4) for Giuffre-Menegotto-Pinto Model Modified by Filippou et al.
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3.2 Concrete Models

3.2.1 Modified Kent And Park Model

This section is based on doctoral dissertation of (Yassin 1994).

3.2.1.1 Stress-strain relation

The concrete model describes the concrete stress-strain relation under an arbitrary cyclic
strain history. In particular, the model implemented takes into account four important factors:

1. effect of concrete confinement on the monotonic envelope curve in compression

2. successive degradation of stiffness of both the unloading and reloading curves, for increas-
ing values of compressive strain

3. effect of tension stiffening

4. hysteretic response under cyclic loading in compression

The monotonic envelope curve of concrete in compression follows the original model of Kent
and Park (1971) and extended by Scott, Park and Priestley (1982). Even though more accurate
and complete models have been published since, the so-called modified Kent and Park model
offers a good balance between simplicity and accuracy.

Tension stiffening is the ability of concrete between cracks to resist tensile stress and con-
tribute to the flexural stiffness of the member. Due to the discrete nature of the cracks, concrete
in between cracks remains bonded to the reinforcement and, thus, contributes to the stiffness of
the member. However, as the magnitude of load increases, additional cracks form at closer inter-
vals, hence reducing the tensile stress that can be developed in the concrete. Therefore tension
stiffening is gradually reduced as load is increased in the post-cracking stage. Past investigators
have taken tension stiffening into account by modifying the concrete stress-strain relation such
that, after reaching the tensile strength (cracking), the tensile stress reduces gradually to zero
as tensile strain is increased. The gradual reduction of tensile strength is often approximated
as linear, multi-linear or exponential. A similar approach with a linear rate of reduction is
adopted. However, the results indicate that the application of tension stiffening over all fibers
of a member can lead to significant overestimation of the ultimate strength. Rather tension
stiffening is a localized phenomenon that affects the concrete in the immediate vicinity of the
reinforcement. In analytical studies, only the concrete fibers within an effective area around
the reinforcements are assigned tension softening. Clearly, the size of the effective area has a
significant effect on tension stiffening behavior of the member.

In the modified Kent and Park model (1971) shown in Fig. B16] the monotonic concrete
stress-strain relation in compression is empirically defined by three regions. Adopting the
convention that compression is positive, the three regions are,

e Region OA: . < ¢g
2
o= K .. [2.2_ (%) ]
€0 €0

Jc:K'fc'[l_Z(gc_go)]

e Region AB: g¢ < &, < €99
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Fig. 3.16 Concrete material model in compression
(Yassin 1994)

e Region BC: g, > e9g
0.=02-K-f,
The corresponding tangent moduli are given by the following equations
e Region OA: . < ¢g

e Region AB: ¢y < e. < €9

e Region BC: g, > g9

Etan 0
where,
go = 0.002 - K
Ps - fys
K =148 Jus
fe
0.5

3+40.29- f. 3
1571000 T 0-75 - ps - /5= — 0.002 - K
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€p is the concrete strain corresponding maximum stress, €99 the concrete strain at 20 percent
of maximum stress, K a factor which accounts for the strength increase due to confinement, 2
the strain softening slope, f. the concrete compressive cylinder strength in MPa (1 MPa = 145
psi), fys the yield strength of stirrups in MPa, p, the ratio of the volume of hoop reinforcement
to the volume of concrete core measured to outside of stirrups, A the width of concrete core
measured to outside of stirrups, and sj the center to center spacing of stirrups or hoop sets.

The cyclic unloading and reloading behavior is represented by a set of straight lines. Fig.
B.I6shows that hysteretic behavior occurs under, both, tensile and compressive stress. Although
the compressive and tensile hysteresis loops are continuous, they will be discussed separately
for the sake of clarity.

[ J@)

Fig. 3.17 Concrete material model under cyclic loading in compression
(Yassin 1994)

On the compressive side of the model, there is a successive degradation of stiffness of both
the unloading and reloading lines for increasing values of maximum strain, as shown in Fig.
The degradation of stiffness is such that the projections of all reloading lines intersect at
a common point R in Fig. B.I7 Point R is determined by the intersection of the tangent to
the monotonic envelope curve at the origin and the projection of the unloading line from point
B that corresponds to concrete strength of 0.2 - f. (Fig. BIT). The strain and stress at the
intersection point are given by the following expressions

_02-K - fo— By -
E. — Ey (3.31)
op=FE.-€r

€R
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where FE. is the tangent modulus of the monotonic envelope curve at the origin, Fyy is the
unloading modulus at point B of the monotonic envelope curve with a strength of 0.2 - f.. The
magnitude of Esg has to be determined experimentally.

After unloading from a point on the compressive monotonic envelope (point D in Fig. B17]),
and before reaching the zero stress axis (point H in Fig. BI7), the model response follows two
smaller envelopes that are defined by the following equations,

e Maximum envelope (line HD)

Omaz = Om + ER - (Ec - Em) (332)
e Minimum envelope (line HE)
Omin = 0.5+ ER - (50 - €t) (333)
where,

Fp = Om — OR

Em —ER
. " O (3.34)

t—¢<m ER

om and &, are the stress and strain at the unloading point on the compressive monotonic
envelope, respectively. Therefore, the positions of the two smaller envelopes depend on the
position of the unloading point. For partial loading and unloading cycles within the smaller
envelopes the model follows straight line with modulus E..

In the numerical implementation a trial stress and tangent modulus are assumed based on
linear elastic behavior with slope F.,

UZn = 0Ocn—1+ Ec- AEc,n (3.35)

Zrn is the updated trial stress, o, 1 is the previous stress state and Ae.,, is the strain

increment. The following rules are then used to determine actual stress and modulus of the
model

where o

if  opin < aZn < Omaz then o, = O’Zn and E'" = E,

if ol <Omin then ocp=0min and E"" =05-E, (3.36)

if ag’n > Omae then oc, = omae and Elon — B,

The rules governing the hysteretic behavior of the model in compression according to Eq.
3.31] to are illustrated by a sample history in Fig. BI7 If unloading occurs from point
D to point E, reloading will be on the same path back to D. If unloading reaches point F, the
hysteresis loop DEFGD will result upon reloading. If complete unloading to point H occurs,
reloading will result in the hysteresis loop DEHD. It is important to note that the reloading line
will always rejoin the compression monotonic envelope at the point of initial unloading. For
the case when unloading continues past point H and the model starts reloading in tension, a
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different set of rules govern the hysteretic behavior. However upon reloading in compression, the
model will reenter the compression region at the point on the zero stress axis at the completion
of unloading (point H) and whatever happens in the tension region will not affect the behavior
of the model, once it returns to the compression region.

£ LM&Z
<l - !
gc N N’ J
e K'(&g03)
£4Op)
A
g o

Fig. 3.18 Concrete material model under cyclic loading in tension
(Yassin 1994)

The tensile behavior of the model, as shown in Fig. B8] takes into account tension stiffening
and the degradation of the unloading and reloading stiffness for increasing values of maximum
tensile strain after initial cracking. The maximum tensile strength of the concrete (modulus of
rupture) is assumed equal to,

fr = 0.6228+/f. (3.37)

where f; and f. are expressed in MPa.

Fig. B.I8] shows two consecutive tensile hysteresis loops which are part of a sample cyclic
history that also include compressive stresses. The model assumes that tensile stress can occur
anywhere along the strain axis, either as a result of initial tensile loading or as a result of
unloading from a compressive state. In the latter case a tensile stress occurs under a compressive
strain. The tensile stress-strain relation is defined by three points with coordinates (&,0),
(€tp, o1p) and (e,0), as represented by points J, K and M in Fig. BIS8| respectively. &; is
the strain at the point where the unloading line from the compressive stress region crosses the
strain axis. ¢, is given by Eq. 3.34] and changes with maximum compressive strain. e, and oy,
are the strain and stress at the peak of the tensile stress-strain relation and are given by the
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following expressions,

Etp = €t + Agy

E
O'tp:ft'<1+—t>—Et'AEt
E.

(3.38)

where Ag; is the previous maximum differential between tensile strain and e; as shown in Fig.
BI8l Before initial cracking, Ae; is equal to fi/E.. E; is the tension stiffening modulus that
depends on numerical and physical parameters, €, is the strain at the point where the tensile
stress is reduced to zero and is given by the expression,

1 1
Ew=¢er+ fi- <E - E) (3.39)
t c

Given these three control points, the tensile stress-strain relation and tangent moduli are defined
by the following equations (tension is positive),

e Region JK: g <e. < gy

Otp

o, = Bt . (ec — &), pton — P (3.40)
Etp — &t
e Region KM: g <e. < gy
Oc = 0o + Efn . (g, — Etp)s Eln — R, (3.41)
e Region MN: g, > g,
o.=0, E"" =0 (3.42)

If g4 > €, then oy, 0. and Et are all assumed to be zero. The modulus E; controls the
degree of tension stiffening by controlling the slope of Eq. B:4Il The steeper the slope, the
smaller will be the effect of tension stiffening. Tensile unloading and reloading are governed
by Eq. B40 which also includes stiffness degradation for increasing values of strain differential
Ag;. The value of Ae; changes whenever €, — g¢,.

The tensile behavior of the model, as characterized by Eq. B3T to B42] can be better
understood by following the example load paths in Fig. B8 As the model unloads from
compression, it crosses the strain axis at the point J. It then loads in tension until initial
cracking occurs at point K. Beyond point K softening commences until the strain reversal point
L. The unloading path follows a straight line from point L to point J where the model reloads
in compression. The second time the model goes into tension is at point J’. The reloading
path J'K’ is exactly the duplication of the previous unloading path LJ that has been shifted a
distance JJ’ along the strain axis. At point K’ the model rejoins the softening branch which
continues until the tensile stress is reduced to zero at point M’. The stress remains zero through
the strain reversal point N’ until the model reloads in compression at point J’. Henceforth, the
tensile stress capacity of the model is reduced to zero.

The present concrete model is relatively economical in terms of the amount of memory
required of the past stress-strain history. The parameters that are used as memory can be
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listed as follows:
1. the stress and strain at the point corresponding to the last model state
2. the strain at the last unloading point on the compressive monotonic envelope, &,
3. The differential Ae; between maximum previous tensile strain and &;

The concrete damage considered in the present model is in the form of unloading and
reloading stiffness degradation for increasing values of maximum strain. But actual concrete
damage also includes the reduction of the monotonic envelopes under cyclic loading.

3.2.1.2 Determination for modified Kent and Park model

Fig. [B.19] and [3.20] show the procedure to obtain uniaxial stress ¢ and tangent modulus
E'" from uniaxial strain .

3.2.2 Anisotropic damage model with effective damage and stiffness recovery

For real time hybrid simulation of reinforced concrete structures, it is of paramount impor-
tance that the concrete model does not require heavy computations, yet be accurate enough to
be realistic. Such a model is developed by Ragueneau, Souid, Delaplace and Desmorat (2006).

3.2.2.1 Constitutive model

Thermodynamic potential The Gibbs potential p-¢* is based on the Ladeveze’s framework
(Ladeveze 1983) for anisotropic damage model. The splitting of the stress tensor into
deviatoric and hydrostatic components allows us to consider seperately the shear and
the hydrostatic parts. Furthemore, each component is again splitted into two additional
ones: the positive and the negative in order to model the unilateral effect, Fig. B.2Il The
damage influences only the positive part through the damage tensor D.

1 —2v [ (Tro)%
6-F |1—Dpgy

71—|—I/
2.F

p- o [Tt (H-oPH ) +Tr ((e”)_(a”)-)] + + (Tro)? | (3.43)

where p, v and E are respectively the density, the Poisson’s ratio and Young modulus.
The damage tensor is defined by

where (-)” is the deviatoric of (-),

(-)+,— is the positive or negative part of (-), and Dy is the hydrostatic part of D,

1
Dy = gTrD

111



In Ladeveze’s framework (Ladeveze 1983), 02 is an unusual positive part of a”: if A; are

the eigenvalues of Ho” and T! the corresponding eigenvectors, a?_ is

ol = > )y (1) (E T
I

Constitutive law The constitutive law is derived from Gibbs potential using Eq. B.43t

0o*
€Tl Bo
=L [ o)+ 00 L [ s ey 1
1+v . v -
- -O'—E-TF(O')'I

where & is the effective stress defined by

o= [(H -afH)D + (O‘D>£)] + [7?%2? + (Tr (a)>_} I

Damage evolution law The damage evolution law should account for cyclic loading. Hence,
the damage criterion f should depend on an effective damage d. (Ragueneau et al. 2006)

such that
f=¢é—k(d)
_ D: (e)+
max (g7)
where € is Mazars strain defined by
t= Vi e

and k the consolidation function,

d K
k(d:) = a-tan [—2 + arctan <—0>]

a a

where A and a are two damage coeflicients, and kg is initial elasticity threshold.

Thus, if the damage criterion is negative, the material is in the linear elastic range, and
if it is positive, the damage increases along the positive strain:

D = Ae)+

where the damage Lagrange multiplier \ is determined from the Kuhn-Tucker condition
(f=0and f'=0).
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3.2.2.2 Uniaxial multi-fiber formulation
Multi-fiber formulation based on Euler-Bernoulli beam theory is equivalent to a uniaxial

loading. Hence, the stress tensor and the strain tensor are reduced to

i1 0 0
o= 0 0 0
0 0 0
and,
€11 0 0
g = 0 €99 0
0 0 €33

The damage tensor becomes diagonal and the constitutive law can be rewritten as (Desmorat,

Ragueneau, Souid and Delaplace 2008),

SIS

8:B(D1,D2) .

where B is a diagonal tensor which depends on the damage variable and loading, and D7 and
Dy are associated with tension and compression damage respectively.
For tension, we assume that only D; increases.

Bt I+ 4 o) 4 1—-2v
=9 1— D, 3-[1—2-(D;+2-Dy)]
14+v 2 1—-2v
Bjy = By = : +1)+
2 9 <1—D1 3-[1—% (D1 +2-Dy)]
For compression, we assume that only D increases.
1 2 1-2
ﬁ:—+”.<4+ >+ z
9 1— Do 3 (3.44)
1+v 1 1—2v )
BS, = BSy = — (2
22 33 9 <+1—D2>+ 3

3.2.2.3 Determination for anisotropic damage model
3.2.2.3.1 Tension loading: €11 >0

e Constitutive equations
If f=¢6—ko>0andn =1 then:

E
7= 1+v 4 1—2v €
5 (e +2) + 3(1- 22D (3.45)

Di=a-A (atan (%) — atan (%))
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Wherea €= <6>+ : <6>+ =ée11 2> 07

D5 is constant and tangent modulus is determined with Eq. [3.45k

G =FE".¢

However, if f =& — kg < 0, the tangent modulus is equal to the secant one.

E
Etan -
By

e Coherent tangent stiffness modulus in numerical implementation

(3.46)

If f=¢—ko>0and n = 1, tangent modulus is determined with Eq. [3.45] and [B.46}

1+v 4 1—-2v
B, = : 2
9 (1 “Dia ) Y (1- BrotzBaa)

Dip=a-A <atan <€11’"> — atan <@>>
a a

where n is current excitation step.

do, O ( E > E 1 oBi, ,
= — En | =5——F-¢en :

G—En_(‘?an

where,

aB{Ln _ 8Bil,n . aDl,n
(9En 8D17n aEn
Bi1, 1+v 4 1—2v

OO T WD g (1 Dt
Cy— 8821nn _ aisn (a -A (atan (%) — atan (%))) = ﬁ
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Finally, we obtain tangent modulus:

3.2.2.3.2 Compressive Tension loading: ¢1; <0
e Constitutive equations

If f=¢—ko>0andn =1 then:

E
1+ 2 1-2
RS <m+4) +5

Dy = ¢ ;4 <atan <@) — atan (%)) (3.47)

g = - €

B3
€22 = 4o €11
By
where, & = \/(g)4 : (€)4+ = /23, >0,
0 O 0
E+=1 0 e 0

0 0 e33=¢2

D is constant and tangent modulus is determined with Eq. B.4T

o= FEn. g (3.48)

However, if f = ¢ — kg < 0, the tangent modulus is equal to the secant one.

e Coherent tangent stiffness modulus in numerical implementation

If f=¢—ko>0andn =1, tangent modulus is determined with Eq. B47] and B48}
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on
Oey,

1+v 2 1—-2v
BY = - 4
1,n—1 9 < + 1-— Dg,n_1> + 3

1+v 1 1—2v
BSy. =Y (2
22.n—1 9 < + 1= D2,n—1> + 3

1+v 2 1—-2v
B, =—— (4
11n 9 < * 1—D2,n> T3

1+v 1 1—2v
BS,, = — 2
22n 9 ( + 1—D27n> T3

where n is current excitation step.

tan __
B =

c
~ o B22,n—1 tr ~
Un—1= ——0¢ s 2n — “VUn—1-€11n
Bi 1 ’
c
o B22,n o~
Up=—7¢ s €22n = —Vp-Elln
Bll,n

where, 53’"2 ,, 1s trial strain on e99.

80n 8 ) ) 1 8Bf17n
Oy, Ogn \ By,

where,

8Bfl,n o anl,n 8D2,n
8€n N aD2,n 8€n
OBt ,, 2(1+v)

Cy =
' 0Dy, 9(1— D)2

B 0Dy, B 0 —Tp1 V2 €1l,n Ko
Cy = 95, 0. <a - A (atan ( , > — atan <;>

. A 1
= —U,_1— -
" 1\/5 1+ (—ﬂn—l-[\l/i-ell,n)2

Finally, we obtain tangent modulus:

E 1
Etan — o E Le, -
" Bfl,n "

B e
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Fig 322 to B.24] shows the procedure to obtain uniaxial stress ¢ and tangent modulus E"
from uniaxial strain e.
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Concrete linear tension softening model deternonatsi
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Fig. 3.19 Determination (1) for modified Kent and Park model
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Determination (2) for modified Kent and Park model
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Fig. 3.21 Cracks induced by compression, tension, tension and compression
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Anisotropic damage model determination
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Fig. 3.22 Determination (1) for the anisotropic damage model

120




Uniaxial tensile strain
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Fig. 3.23 Determination (2) for the anisotropic damage model
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Uniaxial compressive strain
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Fig. 3.24 Determination (3) for the anisotropic damage model
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Chapter 4

NONLINEAR SOLUTION FOR
ELLIPTIC PROBLEMS

This chapter describes the nonlinear solver for static analysis in Mercury.

4.1 Force And Displacement Control

The governing equilibrium equation of a nonlinear system can be expressed as

peet n P{ ] K Ku u;
szt P{je“ | K K Uy,
——— — —

Pg Ks us

(4.1)

where P, u and K are the nodal force, nodal displacement and stiffness matrix expressed in
the structural level, and subscripts ‘u’, ‘¢’ and ‘S’ refer to known displacement or displacement,
known force, and structural level respectively, superscripts ‘ext’ and  fea’ refer to external and
fixed end action caused by element distributed load, Fig Equilibrium is satisfied when

external nodal forces are equal to the internal ones,
P& — P =0

where P?t is determined from state determination in chapter 2

(4.2)

For nonlinear system, the incremental displacement vector between the previous step n — 1

and the current one n is
AuS,n =usn —uUsn—1

During iteration, the nodal displacement vector at the k** iteration is given by:
k k—

_ 1 k
uS,n - uSm + 5u5’,n
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E .k k—1
where 5us7n =ug, —ug,

We can rewrite Eq. @l in incremental form for the k" iteration of force or displacement
control within a Newton-Raphson iteration:

Rk v v int, kv k— k— ?
{ Pt,n = Pf,mnt + P{;a - Pff,nn } _ [ Ktt,nl Ktu,71L ] { 5111];” } (4 3)
int. kY - v '

? v k—1 k—1
Pﬁ’r]f = Pfﬁfl’k + P{?ﬁ — PZJ’L:L’ Kut,n Kuu,n 5uu,n
. k—1 k
Pg,,'r]; :6PI§,TL KS,n 6uS,n

where, superscript ‘v’ and ‘7’ refer to known and unknown quantities.
For convenience, we will consider the vector of external forces to also include the contribution
of the element load through the nodal fixed end actions:

extV _ pextV fea‘/
P - Pt,n + Pt,n

t,n

ewt,k? _ ewt,k? fea‘/
Pu,n - Pu,n + Pu,n

,and thus the incremental displacements can be expressed as:

E?_ k7 k—1Y
5ut,n - ut,n - ut,n
5uu n = Uun Uy,n—1

)
The essence of the finite element analysis is to first determine the displacement 5uf,n', and

?
then Pifﬁ’k from Eq.

4.2 Nolinear Solution

The fundamental equation to be solved in nonlinear analysis is Eq. which is rewritten
in incremental form at step n (Bathe 1996),

Pl =P — P =0 (4.4)
where superscript R refers to residual.

Both Pf”ﬁf and Pff;f are determined from the principle of virtual displacement. Since the
nodal force vector Pf“’ﬁf is a function of the nodal displacement vector u;, and the problem
is nonlinear, an iterative approach is followed to solve Eq. 4l Assuming that forces are
independent of the displacements (conservative system and ignoring P — A effects), we solve
Eq. 4 by the Newton-Raphson method which will be described in more detail later.
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Linearization of the system yields

k int,k
Pt = pgt_pt 4.5
k k—11—1 R,k
5ut,n [Ktt,n] ) Pt,n
k k—1 k
ut,n - ut,n + 5ut,n
where,
k=0
ut n ut,’ﬂ—l

These equations are obtained by linearizing the structural response of structure at the current
step n and k" iteration. Within each iteration we determine the residual nodal force vector,
Eq. E5] that yields an incremental nodal displacement vector obtained from Eq. 6, and we
continue the iteration until the residual nodal force vector or the incremental nodal displacement
vector is sufficiently small.

We will next discuss several iterative methods in more detail. At the heart of all these,
solution is the determination of the internal nodal force vector Pin,fk, and the tangent stiffness
matrix Kft_nl Solution of Eq. will be described in chapter. [ Hence, we next focus on the
iterative methods to solve Eq. to .71

4.2.1 Newton-Raphson iterative method

The most frequently used iterative method for nonlinear problems is the Newton-Raphson
iterative method given as expressed by Eq. to 7 Let us derive the procedure in a more
formal manner.

The fundamental equilibrium equation to be satisfied is

f(u*) = Pffﬁf(u*) - P%(u*) =0 (4.8)

where, f(-) is the function of internal state value (). In the preceding equation it is often, but
not exclusively, the vector of nodal displacement u, which is why we express it by u* as other
variables may be state present.

Assuming that uf;l is known, then a Taylor series expansion gives

of
f(u*) = f(uf,;l) + 8_u| k-1 - (0" — uﬁ;l) + High-order terms (4.9)

u
Substituting Eq. 48] into Eq. 19, we obtain

Py

7u | k-1 (0" — uf’;l) + High-order terms = P{7 — pinbh—l — Pfﬁk (4.10)

llt,n t,’ﬂ

where we assume that the external nodal forces are again displacement-independent.
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Neglecting the high-order terms in Eq. [£10] we can determine the incremental displacement,
k k—11—-1 pRk
5ut,n = [Ktt,n] : Pt,n (4.11)

where K1 is current tangent stiffness matrix

Kiin = | ah=1 (4.12)

and the improved displacement solution is given by

uﬁn = uﬁ;l + 5u§n (4.13)

Equations .11 and T3] constitute the Newton-Raphson solution of Eq. 4l Since an incre-
mental analysis is performed with external force steps (or time steps At), the initial conditions

in this iterative method are

k=0
Ktt,n = Kitn1

k=0
ut7n - ut,n—l
int,k=0 __ int
Pt,n - Pt,n—l

The iterations proceed until an appropriate convergence criteria is satisfied.

Nodal force P,
A
k=0 k=1 k=2
KII,I’\ Klt,n Ktt,n
ext
Pt,n | pRK=2 i}
¥ Rk=1
/1 "R
PR,k=0
t,n
ext
P
k=1 k=2 k=
ouy, Alg, QU
Uina Uin Nodal displacement U,

Fig. 4.1 Illustration of Newton-Raphson iterative method
(Bathe 1996)

A characteristic of this iterative method is that a new tangent stiffness matrix is determined
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in each iteration, which is why this method is also referred to as the full Newton-Raphson
iterative method. Fig. ] illustrates the process of solution when used for a single degree of
freedom system. The nonlinear response characteristics are such that convergence is rapidly
obtained. However, we can imagine a more complex response characteristic with a starting point
of iteration for which the procedure does not converge. Thus, the representation in Fig. 1] is
rather simplistic because a very special case is considered - that of a well-behaved single degree
of freedom system. In the solution of systems with many degrees of freedom (and possibly
including concrete softening), the response curves will in general be rather non-smooth and
complex.

4.2.2 Initial stiffness iterative method

Considering the Newton-Raphson iterative method it is recognized that in general the major
computational cost per iteration lies in the calculation and factorization of the tangent stiffness
matrix. Since these calculations can be quite expensive for large systems, a modificaion of the
Newton-Raphson algorithm can be effective. First we will consider the initial stiffness iterative
method

This method always uses the initial stiffness matrix Ky in Eq. E11l Therefore,

guf, = Kyt P (4.14)

with the initial conditions

As such only Kftf,?zo needs to be factorized, thus avoiding the expense of recalculating and
factorizing many times the tangent stiffness matrix is Eq. ET1l This initial stiffness iterative
method corresponds to a linearization of the response about the initial configuration of the
finite element system and will converge very slowly and may even diverge. It is illustrated in
Fig. for a single degree of freedom system.

4.2.3 Modified Newton-Raphson iterative mathod

In the modified Newton-Raphson iterative method an approach somewhat in between Newton-
Raphson iterative method and the initial stiffness iterative method is adopted. In this iterative
method we use

k -1 Rk
5ut,n = [Ktt,n—l] ’ Pt,n (415)
with the initial conditions
k=0
ut7n - ut,n—l
int,k=0 _ pint
Pt,n - Pt,n—l

The modified Newton-Raphson iterative method involves fewer stiffness decompositions than
the Newton-Raphson iterative method and bases the stiffness matrix update on an accepted
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Nodal force P,
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Yy l/ ~
pREk=L

tn

1/

[
Pt,n 1
ou

t.,n

t.n

.

Uina Uin Nodal displacement U,

Fig. 4.2 Tllustration of initial stiffness iterative method
(Bathe 1996)

equilibrium configuration. The choice of external force steps or time steps when the stiffness
matrix should be updated depends on the degree of nonlinearity in the system response; i.e.
the more nonlinear the response, the more often the updating should be performed. Fig.
illustrates the performance of the modified Newton-Raphson iterative method for a single degree
of freedom system.

4.3 Convergence criteria

An appropriate termination criteria of the iteration should be adopted for any incremental
solution strategy based on iterative methods. At the end of each iteration, the solution ob-
tained should be checked to see whether it has converged within defined tolerances or whether
the iteration is diverging. If the convergence tolerances are too loose, inaccurate results are
obtained, and if the tolerances are too tight, much computational effort is spent to obtain need-
less accuracy. Similarly, an ineffective divergence check can terminate the iteration when the
solution is not actually diverging or force the iteration to search for an unattainable solution.
Here now describe briefly some convergence criteria.

Displacement criteria The residual nodal displacement vector du” at the end of iteration
should be within a certain tolerance. Hence, a realistic convergence criterion is

Joul]| < ep (4.16)

where €p is a displacement convergence tolerance and || - || is the Euclidian norm defined
as the square root of the sum of the vector components squared.
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e
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P
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Fig. 4.3 Illustration of modified Newton-Raphson iterative method
(Bathe 1996)

Force criteria This convergence criterion is obtained by determining the Euclidian norm of
. R,k
the residual nodal force vector P, 7" and:

P < er (4.17)

where €f is a force convergence tolerance.

Energy criteria A difficulty with the force criterion is that the displacement solution does
not introduce the termination criterion. As an illustration, consider an elasto-plastic
truss with a very small strain-hardening modulus entering the plastic region. In this case,
the residual force vector may be very small while the displacements may still be much
in error. Hence, the convergence criteria expressed by Eq. and [£17 may haver to
be used with very small values of ep and ep. Also, the expressions must be modified
appropriately when quantities of different units are measured.

In order to provide some indication of when both the displacements and the forces are
near their equilibrium values, the energy criteria can be used. It is expressed as:

1
‘i-Pf;Lk-équ <e€g (4.18)

where ep is an energy convergence tolerance.

Since Eq. [£1I8 contains both the displacements and the forces, it is in practice an attrac-
tive measure.
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An important point is that the convergence tolerance €p, ep and e may need to be quite
small in some solutions in order to reach a good solution accuracy.

4.4

Step 1

Step 2

Step 3

Step 4

Step 5

The spherical arc-length method

Residual nodal force vector

_ ext ext
AI')t,n =P - Pt,n—l

t,n
Pfﬂ/:l _ APt’n
Ry _ pinti ext
Pt - Pt,n - A Pt,n

where, AP; , Pt and sz are incremental, external and residual nodal force vector, and
A is scalar force-level parameter

Incremental tangent nodal displacement vector due to external nodal force vector

5 ewti Ktan,i -1 peat
u = ttn :

t,n t,n

where du§*! is incremental tangent nodal displacement vector, and K/ is tangent stiffness

matrix.

Incremental nodal displacement vector

9 —1 .
—7 tan,i R
oal, = [Ktt,n } 'Pt,n

t,n

ext,i

T £=1
6ut,n - 5ut,n + 6ut,n

where, 6u; and duy, are incremental nodal displacement vector due to residual nodal
force vector and incremental nodal displacement vector.

Incremental are-length

[AL)7 = [Au;] - Auy + AXT g2 [P T Pyt

n t,n
where, Al is incremental arc-length, Au; and A\ incremental nodal displacement and

incremental scalar force-lever parameter from last converged equilibrium state, and v
scaling parameter for arc-length constraint.

Incremental scalar force-level parameter

ar- [6X)])% +as - 60X, +a3 =0 (4.19)
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where,

AT :
= [ouisi ] st 2 (PPl
AT . ; ;
az =2 [ouis ] (Aufnt+ou,) +2- AN w? - [P Py
as = (Aufy! +ow;,)" - (Auiy! +ou),) — [A6L]T+ AN w2 [Py P

where, d) is incremental scalar force-level parameter. Eq. [£.19 can be solved for dX. If

A can not have real roots, numerical analysis for are-length method fails. Otherwise, if
it has one real root

SN = 6N
else if it has two real roots, R; and Ry
as = [Au " sl + [AdY]T - Al
as = [Aui’_nl]T . 513;

Alf@-cost% =a4+as- Ry

n
Alfl -cos bty = ay + a5 - Ro

If All - cos @ is greater than Al - cosfy, 6N, = Ry, otherwise 6\), = Ry.

Step 6 Update scalar force-lever parameter and nodal displacement vector

X, = ALt 6N,
| o
AN, = AN 46N,
(5ui7n = 51‘11@;’” + (5)@ . 5uf’””nt
Uy = U, o+ o,

i _ i—1 1
Au;, = Auy,, + duy,

v
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Chapter 5

TIME INTEGRATION METHODS
for TRANSIENT ANALYSIS

At the heart of the real time hybrid method in the numerical integration of the equation
of motion, this chapter will review relevant numerical integration methods which will be later
implemented in the newly developed computer program.

5.1 Introduction

The reduction of the structure from a continuum to a finite set of discrete equations may
be achieved by application of the finite element method resulting in a second order ordinary
differential equation.

My; - ity + Cy; - 1y + P = Pyt (5.1)

where My and Cy are the mass and viscous damping matrices for the idealization of the
structure; ii; is the nodal acceleration vector, 11 is the nodal velocity vector, Pi" is the static
restoring or internal nodal force vector resulting from the nodal displacement vector u;, and
P¢*t is the vector of applied nodal forces due to a seismic loading. Numerical methods for
solving Eq. Bl are divided into two major categories; explicit and implicit methods. This
chapter will limit its coverage to implicit schemes and in particular: 1) Newmark  method, 2)
the Hilber-Hughes-Taylor(HHT) method, and 3) modification of these method by P.B. Shing.

5.1.1 Mass Representation

The mass of the structure may be defined by both specified nodal lumped weights, dis-
tributed weights along the member or element material density. Nodal lumped weights will
contribute only to the diagonal terms of the mass matrix where the terms associated with the
rotational degrees of freedom are often taken as zero. However, in some cases the rotational
inertias can be accounted for. The z, y and z inertia quantities may be different in a struc-
ture particularly in a two-dimensional analysis where the frame being analyzed is flanked by
adjoining frames which carry vertical loads but have relatively insignificant lateral stiffness. In
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this case the vertical inertia is associated only with that of the frame being analyzed while
the horizontal inertia has to represent the sum of the inertia contributions of all frames being
supported, in the lateral direction, by the frame being analyzed.

The mass matrix may take one of two forms.

1. The lumped mass is where contributions are made to the diagonal terms associated with
the three translational degrees of freedom at the nodes of a member in 3D frame with no
contribution to the rotational degrees of freedom. However, if there is the contribution
to the rotational degrees of freedom, it may be considered with the diagonal term having
the appropriate coefficient (Cook, Malkus, Plesha and Witt 2002).

2. The consistent mass using kinematically equivalent mass matrix where inertia forces are
associated with all degrees of freedom. This will result in a mass matrix for the structures
with the same skyline form as that of the stiffness matrix. The consistent mass model
requires a greater computational cost int the multiplication by the nodal accelerations
to get the inertia forces at each time-step in the analysis. It also includes all natural
frequencies and consequently gives a slight bias to the frequency content of the structure.

Mercury only supports lumped mass for transient analysis.

5.1.1.1 Lumped mass

In prismatic 2D framed structure, the lumped mass matrix on global reference is presented
as

M,=p-A-L (5.2)

o O O O O

ar'Lz_

Here «, is a nonnegative coefficient for rotation. «, zero will result in a singular mass matrix
which is undesirable if a mass-inverse appears. An ad hoc to prescribe «,. is to imagine that a
uniform slender bar of length L./2 and mass m/2 is attached to each node and rotates with
it. The associated mass moment of inertia is I, = (m/2)(L./2)?/3, for which a, = 1/24 (Cook
et al. 2002).

5.1.1.2 Consistent mass

1. Local reference

In prismatic 2D framed structure, consistent mass matrix in local reference is given by

Le
m, = /0 p- A(x)  Ng(z)? - Ng(z)dz

where,



Hence,

140 0 0 70 0 0
0 156  22-L. 0 54 —13- L,
m_p-A-Le 0 22-L, 4-1} 0 13-L. —3-L2 (5.3)
420 70 0 0 140 0 0 ‘
0 54 13-Le 0 156  —22- L,
0 -13-L. —-3-L} 0 -22-L, 4-L?

2. Global reference

In global reference, we rewrite Eql5.3] using rotation matrix, I'..

M, =TT .m, T,

5.1.2 Damping Representation

Transient response of multi-degree of freedom system is determined by the solution of si-
multaneous linear differential equations expressed in matrix form as

My; -ty + Cyp - 0y + Pfgn,f = Pfff
where, 1y, 0, and u;, are the nodal acceleration, velocity, and displacement vectors at the
current time step, respectively; Pi",f is the static restoring or internal nodal force vector at the
current time step.

In practice, there is not enough information to specify the coefficients of the damping matrix,

Cy. Hence, we assume that
Cu =apm My +b; - Ky (5.4)

where, a,, and b are coefficients which pre-multiply the mass and stiffness terms respectively.
Eq. B4l is known as proportional Rayleigh damping.

Rayleigh damping is the most widely used (but not only) model for damping. The coef-
ficients a,, and by in Eq. 54 are calculated based upon two circular frequencies (w; and we,
radians/sec.) to be damped at & and & respectively. Where w,, and &,, are the circular
frequency and the damping ratio of the m* mode.

We recall that the damping ratio for a single degree of freedom (SDF') for mode m is given
by
Ctt,m

2. Mtt,m s Wm

Cm (5:5)

Thus for mass proportional damping of multi degree of freedom (MDF) system, with Cy ,, =

@, - My, this would lead to
am 1

Cm: M

2 wm

The damping ratio is thus inversely proportional to the natural frequency and a,, can be selected

134



to obtain a specified damping ratio in any one mode i or
am =2-G - wj (5.6)

Similarly, and recalling that Ky - ¢ = w2, - My - ¢, a stiffness proportional damping
Cit.m = b - Kyt combined with Eq. will lead to

Cn = — - Wiy (5.7)

In this case the damping ratio is proportional to the natural frequency and by can be selected
to obtain a specified damping ratio in any one mode j or

Combining Eq. and [0.8 leads to the following linear equations

FHIBEG

If one assumes the same damping ratio ¢ for both modes (reasonable practical assumption),
then

~E

2&)2"(.«)]'
Qa =
mn Cwi—l—wj
2w-.w-
by = (——
wi + wj

Fig. 6.1l explains Rayleigh damping.

5.2 Time Integration Methods

Time integration methods by time step are used for solving the equations of motion at
discrete time interval At. If the structural response at the previous time step n — 1 is given
and the equation of equilibrium is satisfied, then the equation of motion for a structure can be
depicted as

My -1+ Cpp - W1 + Pi%_l = Pf,ff_l

At the current time step n, the equation of motion is
My - iy, + Cyt - Wy + P = PYY (5.10)

Time integration methods for solving above equation at each time step are divided into two
major categories which are explicit and implicit methods.
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Fig. 5.1 Rayleigh damping

1. Explicit methods

The nodal displacement vector u;, at the current time step can be calculated from a
function of structural response solutions at the previous time step n — 1. The effective
stiffness matrix for solving the equation of motion consists of mass matrix and/or damping
matrix. This indicates that it is not necessary to invert the structural stiffness matrix.

2. Implicit methods

The nodal displacement vector u;, at the current time step is often represented as a
function of structural response quantities with both the previous time step n — 1 and
the current time step n. For this reason, iteration procedure such as Newton-Raphson

iterative method has to be applied so as to solve equations and to achieve convergence if
the response is nonlinear.

Advantages of using explicit methods for transient analysis include the simplicity of the
algorithm, easy implementation and their fast and efficient computation without the demand
for iterations. In addition, there are no need for the knowledge of the tangent stiffness during the
test. However, explicit methods are only conditionally stable. This means that the computed
response may grow without bond when the product of the time step and the highest natural
frequency of the structure At - w exceeds a limitation. In analyzing a structure with a very
high natural frequency w, a small time interval needs to be used and it can be too small to be
practical. On the other hand, most implicit methods are unconditionally stable. This means
that it is possible to analyze a multi-degree-of-freedom system with high frequency modes using
a reasonably large time step without stability problems. Furthermore, implicit methods can
be customized to provide favorable numerical energy dissipation properties. In addition to the
prescribed viscous damping matrix Cy, implicit methods provide numerical damping which
can be controlled by certain parameters. The value of these parameters can be selected in
order to suppress the spurious higher-mode responses, excited by experimental errors during
the test. However, an iterative solution procedure for a nonlinear system is computationally
more demanding. It introduces the possibility of inducing undesirable loading and unloading
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hysteresis in a structure whose behavior can be highly sensitive to prior inelastic deformation
history. Last but not least implicit methods are ideal candidates fro real time hybrid simulation.

5.2.1 Newmark $ method

5.2.1.1 General Formulation

The most widely used method of time integration methods for solving Eq5.10 is the New-
mark 3 method. We should solve the initial value problem for Eq[5.I0] to find a nodal dis-
placement vector, u;, from the given initial data (u;o and ;o). Let us consider the Taylor
series expansions of the nodal displacement and velocity vector terms about the values at the
previous time n — 1.

aUt7n_1 82ut,n_1 At2 83ut,n At3
L T A TR TR TR T (5.11)
. . (92ut7n_1 83ut,n At2
Wn ~ ut,n—l‘i‘TAt‘F Pt T (5.12)

The above two equations represent the approximate displacement and velocity vectors (uy,p
and 0, ) except for high order terms of Taylor series. We represent the last terms of the above
two equations as follow:

ug.n 0%uy
P AP T — St At
o3t 3! At 3!
3} 3} At?
~ (ut,n - ut,n—l) T
~ By, — 1) A (5.13)
8%y 8%y p—
Py, AL N et — St At
o3t 2! At 2!
. .. At
~ (ut,n - ut,n—l) 7
~ ’)/ (lultm — lnlt’n_l) At (514)

where § and 7 are parameters which depict numerical approximations. These parameters will
account for Eq5T3] and EqEI4 including additional terms which were dropped from Taylor
series approximation. Substituting Eq5.I3] and Eq514] into Eq5I1 and Eq5I2] respectively,
we obtain the two equations as follow:

_ At . .
Uy = W1 + A0y + T W1t A B+ (i — Gign-1) (5.15)

1.lt,n = 1.lt,n—l + At - 1'it,n—l + At - v (ﬁt,n - 1'it,n—l)
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Hence, we obtain the Newmark 3 method, which consists of the following equations:

Pl = My iy + Cy - Uy + Py (5.16)
. At? y N

Un = Wn-1 + At - Ut n—1 + T [(1 - 2ﬁ)ut,n—1 + 25 : ut,n] (517)

ﬁtm = 1.lt,n—l + At [(1 - ’Y)ﬁt,n—l + v ﬁt,n] (518)

where, Eql5.16lis the equation of equilibrium expressed at time n + 1, and Eq5.17 and Eq5.I8
are finite difference formulas describing the evolution of the approximation solution. § and
are parameters that determine the stability and accuracy characteristics. Stability conditions
for the Newmark 3 method follows:

1. unconditionally stable if

1

>

- 2

i

> L
oz 2

2. conditionally stable if

1

>
-2

5

p < 3

with the following stability limit:

E(y—1/2) + [v/2 = B+ (v — 1/2)]/?
v/2 -8

W At < Qupip = (5.19)

where w is maximum natural frequency, 2. is critical sampling frequency, and ¢ is the damping
ratio.

The constant acceleration (trapezoidal rule) method is implicit and unconditionally stable.
The linear acceleration method is implicit and conditionally stable. The central difference
method is conditionally stable. Note that if ¥ = 1/2 has no effect on stability. In practice it is
more convenient to express EqEI9in terms of the period of vibration, 7' = 27 /w, in which case
Eq[BET9 becomes At/T < Qi /(27). In the case of the linear acceleration, At/T is calculated

as follows:
At 1 1

i
T = 2n5 23

A summary for the Newmark # method is shown in Table. 511

= 0.551
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Table 5.1 Properties of the Newmark g method

Method Type I} ~y Stability condition Order of accuracy
Constant acceleration Implicit | 1/4 | 1/2 Unconditional 2
Linear acceleration implicit 1/6 1/2 At < 2v/3/w 2
Central difference Explicit 0 1/2 At <2/w 2

5.2.1.2 Newmark § implicit method

The Newmark £ implicit method can be expressed with Eq. 516, 5.17, and 518 Rewritting

Eq. 617 and B.I8t
llt,n = ﬁt,n + Atz . ﬁ . lnlt,n 520)
U = Opp+ Aoy, 5.21)
where,
N . At? )
Un = Ugn—1 + At - Ut n—1 + T(l - 2ﬁ)ut,n—1
1711€,n = 1.lt,n—l + At(l - V)ﬁt,n—l
Rewritting Eq. £.20, we can solve for i ,,:
. U, — Uy
Wy =——5—— 5.22
Substituting Eq. B.22]into Eq. [.2I], we can rewrite 1 p:
W, = 17l-t,n + ﬁ(ut,n — Utp) (5.23)
Substituting Eq. and Eq. .23l into Eq. 516 we have:
Uy p — ﬁt,n < v ~ int __ t
M [—Atz B } + Cu [ut,n + At - 6(ut,n —Ugp)| + Pinn - Pf“’% (5.24)
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Rewriting Eq. £.24]

1 )
A2 3 ﬁMtt "Wy + ﬁctt ‘g, + PP
5.25)
1 ) ) ) (
= Pfﬁt + My - agp + LCltt Wy — Cpyp gy

At? .3 At- (3
If the trial solutions in given iteration step k are uf’n, and P;",fk, then it does not satisfy the
equations of motion. Hence, we can write for this particular step with residual force vector
R7ku
P,
Rk NI ~ T int,k
Pt,;t = Pext + Mtt (utm — uﬁn) — Ctt Uyn — P;Tln’

t,n

where,

— My +At-v-C
M, — 1 > g
At” -

Using initial stiffness iterative method, we can solve for Auf’n:
Rk
P" =K Auy, (5.26)
where, K, is the effective stiffness matrix, and Aufm is:

k k
Aut,n =Ugn — Uy

In elastic section, we can rewrite P
’

stiffness matrix Ky;:

to compute the effective stiffness matrix with initial

P =Ky - uy, (5.27)

t,n

Substituting Eq. B.27 into Eq. [5.25] we can solve for uy ,:
Keff . ut,n = P;SCnt +mtt . ﬁt,n — Ctt . flt,n
where,

Kepr = My + Ky

k+1
t

o at the next

From Eq. B.26] we can solve for (5ufm and the updated displacement vector u
iteration step k + 1:

1 Rk
5u1]€€n = [Keff] ’ Pt,n

Fig. and explain the implementation of transient analysis using the Newmark [
implicit method with flexibility-based 2D beam-column elements.
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Fig. 5.2 Flow chart (1) of transient analysis using the Newmark [ implicit method
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Fig. 5.3 Flow chart (2) of transient analysis using the Newmark (3 implicit method
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5.2.2 Hilber-Hughes-Taylor method(HHT method)

5.2.2.1 General Formulation

A major drawback of Newmark § method is the tendency for high frequency noise to persist
in the solution. On the other hand, when linear damping or artificial viscosity is added via
the parameter v, the accuracy is markedly degraded. The « method, (Hilber, Hughes and
Taylor 1977) improves numerical dissipation for high frequency without degrading the accuracy
as much.

Equation of motion in HHT method is written at current time step n (forward difference)
as:

M ut "+ Pznt Pext

Seeking an approximate solution of this equation by one-step difference, we write,
My - Gy, + (14 )P — - P = Py

with Eq. BI5

We note that the HHT method introduces a(Pmt Pif;f_l) which is akin of stiffness propor-
tional damping. If the above equation is expanded, effect of damping introduced, and possible
material nonlinearity introduced, we obtain:

(1+a)Pext—aP§fff_1 = Mtt U.t n+(1+a)Ctt utn—a Ctt Utn 1+(1+04)Pmt—a-PZ‘,f_l (528)

If -1/3<a<0,8=(1-a)?/4, and v = (1 — 2a)/2, then the a method is unconditionally
stable and has a second-order accuracy. Hence, Eq. and must all be simultaneously
satisfied through an iterative method.

Assuming that we have obtained the response at the previous time step n — 1, i.e. w1,
U;,—1 and Uy ,—1 which satisfy the equation of motion, we now seek to determine the solution
at the current time step n by iteration. First of all, we need to determine effective external
force and effective stiffness. These are calculated from Eql5.22] [5.23] and

1
tht . u At ﬁ(l + Oé)Ctt ut n (1 + Q)Plnt

— (14 Q)P —a P + (5:29)

1 -
tht “Utp + AL 5(1 +a)Cy -y

(1+Oé)ctt utn—l—oz Ctt lln 1+ - Pmt

The trial solutions in iteration step k are ufn, and Pmtk does not necessarily satisfy the
equations of motion. Hence, we can write for this partlcular step:

PRk (1 + Oé)Pemt — Pfj%t_l + mtt (ﬁt,n — Uf’n> — (1 + Oé)Ctt . ﬁt,n + o - Ctt . ut,n—l
(1 + )Plnt k +a- Pizf_l
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where,
— Mu-ﬁ*At”y(l +C¥)Ctt

M, =
tt At2/8

and Pf ,’f is the residual force vector.
Using the initial stiffness iterative method, we can solve for Aufm:

R,k
Po =K.fr- Ay, (5.30)
where, K, is the effective stiffness matrix, and Aufm is:

k k
Aut,n =Ugn — Uy py

In elastic section, we can express P
)

stiffness matrix Ky; as:

to compute the effective stiffness matrix with initial

Pint = Ktt U n (531)

t,n

Substituting Eq. .31 into Eq. (.29 we solve for uy,:

Keff U p = (1 + Q)Pext — Q- ng%t_l + mtt . ﬁt,n

t,n

— (1 + a) -Cyy - ﬁt,n +a-Cy- 1.1t,n—1 +a- lefflrf—l

where, o
Kerr =My + (1+0)Ky

k+1

tn at the next

From Eq. B30, we solve for 5u§n and the updated displacement vector u
iteration step k + 1:

-1 Rk
511?7” = [Keff] ’ Pt,n

k+1 _ _k k
ut,n - ut,n + 5ut,n

Finally, we note that:

1. « introduces a damping that grows with the ratio of time increment to the period of
vibration of a node.

2. Negative values of o provide damping

3. If @« = 0, we have no artificial damping (energy preseving) and is exactly the constant
acceleration (trapezoidal rule) - Newmark’s # method if § =1/4 and v = 1/2.

4. Maximum value is @« = —1/3 which provides the maximum artificial damping. This
results in a damping ratio of about 6% when the time increment is 40% of the period of
oscillation of the mode being studied and smaller if the oscillation period increases.

5. This artificial damping is not very substantial for realistic time increment and low fre-
quencies, but is non-negligible for high frequencies.
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6. A default value of -0.05 is recommended.

Fig. B4l explains the implementation of transient analysis using the HHT implicit method
in structural level. Element state determination is identical to Fig.

5.2.3 Modification of Newmark $ and HHT method by P.B. Shing

Existing iterative method such as the Newton-Raphson or initial stiffness needs several
iterations for uf’n to converge to the exact solution and this can be computationally expen-
sive. To avoid this problem, a special iterative method with fixed number of iterations and
quadratic interpolation function during iteration (Jung 2005) in each time step was proposed.
The quadratic interpolation function is based on the updated nodal displacement vector uf,n
and the converged nodal displacement vector u;,—1 in the previous time step. In this proce-
dure, the number of iterations within a time step is limited with m. It should be emphasized
that this fixed number of iteration per time step is to address constraints imposed by real time
hybrid simulation. Fig. illustrates the procedure in detail.

Instead of the updated nodal displacement vector u,’in during iteration, the desired nodal

displacement vector uﬁ’,’f at current iteration step can be expressed through the following equa-
tion:
d,m
Wp—2

- c1 o2 03} uim (5.32)

ut,n—l

)

where, k vary from 1 to m, m denotes the total number of specified iteration in each time step,
and

m becomes At/dt, where 6t may correspond to the smallest time interval of an actuator con-
troller in real time hybrid simulation. For the first and second time steps, the quadratic inter-
polation is based on the initial displacement and velocity vectors as follow:

1. n=1

k 2
uil”lk:C2'ut,0_2'm'01'ﬁt70+<E> ury

dk dm k
why, =Cl-wo+C2-u, | +C3-u;,
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Fig. 5.4 Flow chart of transient analysis using the HHT implicit method
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e Quadratic curves
Actual curve
ut
A
At At
o ug”
) Thes
SQu
-
./
d k=2 /
A
ugy ™
m
ut,n—l
T
t,n—2 51: 5t (d:At/rn)
(n-2)nt (n-1)[At nIAt ~ 1

Fig. 5.5 Shing iteration scheme using quadratic interpolation

In this procedure, experience indicates that 10 iterations in a time step will provide satis-
factory convergence even for strongly nonlinear structural responses provided that there is no
severe strain softening (Wei 2005).

Fig. explains the implementation of transient analysis using the Newmark 3 implicit
method in structural level with initial stiffness method modified by P.B.Shing. Element state
determination is identical to Fig. B3l
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Fig. 5.6 Flow chart of transient analysis using the Newmark 3 implicit method in structural

level with initial stiffness method modified by P.B.Shing
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Chapter 6

MERCURY IMPLEMENTATION

Incomplete

The theory behind Mercury having been developed in the previous chapters, this one will
address its computer implementation and strategy.

6.1 General Description

Mercury was developed in two stages. First a Matlab version was written in order to check
accuracy and reliability of the various models within a user-friendly environment. Once the
Matlab version was deemed satisfactory, then a c+-+ version was written from scratch by a
professional programmer (Dr. G. Haussmann, Technical Director of CU-NEES) in such a way
to be optimized for real time hybrid simulation.

This two tier approach proved most valuable as the Matlab version not only greatly facili-
tated subsequent implementation in c++ but by it self it constitutes an excellent pedagogical
tool for those interested in learning the intricacies of nonlinear structural analysis with mod-
ern elements (flexibility based with fiber sections, and appropriate constitutive models). Such
a code exist, (Fedeaslab), (Filippou 2004) however the source code is locked. Another code
would be OpenSees, however few graduate students feel comfortable in programming in c+-+
and would rather modify a Matlab one, (Faniel 2009). Finally, there is FEAP, (Taylor 2008)
which could be an intermediary solution, as modifying Fortran remains a rather simple task.

Furthermore, the Matlab version of Mercury is set up to perform hybrid simulation. Cur-
rently, a client version of Mercury could simulate the experiment as a prelude to an actual test.
This platform is also ideal from a pedagogical point of view to understand the concept of hybrid
simulation.

The integration of the two versions of Mercury, as well as supporting code is shown in Fig.
The Matlab and the c++ version are designed to accept similar (but not identical files),
hence m21lua.m is a Matlab based translator which will convert .m files into .1lua ones. Similarly,
the mesh definition for a multistroy orthogonal frame with fiber sections, zero length elements
and /or sections can be a daunting task. Hence this task is facilitated by mmg.m (Mercury Mesh
Generator) which reads key information from a preformatted Excel file and generates a Mercury
compatible file ready to run.
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Fig. 6.1 Integration of Mercury versions and supporting codes
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Finally, the c++ version of Mercury can be embedded in Simulink, LabView or operate
within Windows, Linux or Real Time Linux kernels.

6.2 MatLab Implementation Strategy

The Matlab version of Mercury is structured as shown in Fig.

Input

Basic -
Information =
A

Force |« » Analysis | » lteration |
v
‘ Element

A
Material |«

¢

Fig. 6.2 The program architecture of Mercury on Matlab in Mercury

Each block in Fig. refers to several .m files defined below:

Input groups all .m files associated with problem definition by the user.

Basic
e DefaultValuse: Initializes all variables used in analysis.
e GlobalVariables: Defines global variables.
e MatrixVectorSize: Assigns matrix and vector sizes based on from dimension and
number of d.o.f per node.
Information

e Assemble: Extracts stiffness matrix (Ky ) for free d.o.f and stiffness matrix (K, )used
in displacement control from augmented stiffness matrix.

e DynMassDamping: Computes mass and damping matrices for dynamic analysis.

e ElementInfo: Defines geometries of each element and defines section type or material
type of each element.
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e GaussLobatto: For frame element, Calculates locations of each section and weighting
coefficients in each element.

e InitialStiffnessMatrix: Augments initial stiffness matrices of each element.

e FlexibilityBasedElementStiffnessMatrix: Computes initial stiffness matrix of
flexibility-based element.

e StiffnessBasedElementStiffnessMatrix: Computes initial stiffness matrix of stiffness-
based element.

e TrussElementStiffnessMatrix: Computes initial stiffness matrix of truss element.

e InterpolationInfo: Computes the displacement interpolation functions matrix for
stiffness-based elements and force interpolation functions for flexibility-based ele-
ments.

e NodeInfo: Stores all nodal information of each element such as coordinates, ID
matrix and LM matrix.

e PropertyInfo: Stores material properties of each element.

e TransformationInfo: Computes transformation matrix.

Force

e AccForces: Computes acceleration forces such as earthquake data depending on
force steps.

e ExternalForce: Assembles all external forces for each force step.

e IncrementalElementDistributedForces: Computes incremental element distributed
forces based on force steps.

e IncrementalNodalDisplacements: Computes incremental nodal displacements for
displacement control based on force steps.

e IncrementalNodalForces: Computes incremental nodal forces based on force steps.
e InitialElementDistributedForces: Computes initial element distributed forces.

e InitialNodalDisplacements: Computes initial nodal displacements for displace-
ment control.

e InitialNodalForces: Computes initial nodal forces.

Analysis

e DynamicAnalysisHHT: Master file for HHT method of dynamic analysis.
e DynamicAnalysisNM: Master file for Newmark § method of dynamic analysis.

e StaticAnalysis: Master file for nonlinear static analysis.

Iteration

e InitialStiffnessMethod: Master file for initial stiffness method.
e ModifiedInitialStiffnessMethod: Master file for modified initial stiffness method.
e ModifiedNRMethod: Master file for modified Newton-Raphson method.
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e NRMethod: Master file for Newton-Raphson method.
e TempModifiedInitialStiffnessMethod: Master file for Shing’ method.

Element

e ElementDetermination: In element level, computes element nodal forces and dis-
placements etc.

Section

e SectionDetermination: In section level, computes section forces and deformations
etc.

e FiberSection: Defines fiber section analysis.

e GeneralSection: Defines elastic section analysis.

Material

e HardeningMaterial: Determines uniaxial stress and strain for hardening material.

e AnisotropicDamageMaterial: Determines uniaxial stress and strain for anisotropic
damage material.

Output

User modified.

6.3 c++ Implementation Strategy

The C++ software described here is intended to be a compact finite-element solver capable
of numerical and real-time hybrid simulation of structures. The software is meant to be run
stand-alone or embedded within other software applications such as LavView or MATLAB
Real-time workshop.

6.3.1 General Desired Functionality

All components should have a certain level of basic functionality, including;:
e An identifier so the component can be looked up via its name.

e A component should be able to write its complete state to and read from disk and the
network.

e A component should expose its core functionality (whatever that may be) to the available
scripting language(s).
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6.3.2 Named Composite Hierarchy (NCH)

e Use Composite (Gamma, Helm, Johnson and Vlissides 1994, page 395) to allow for nested
analysis, assembly, nodes, elements

e All named objects have an identifier, even if implicit.

e Named objects can be children nodes of other named objects.

e Named objects can be discovered via a full path name or their identifier.
e ComponentGroup collects a set of objects.

e Subtrees can be copied, deleted, written to a stream, etc.

NamedComposite Command
Children arguments
Parent
name
+numArguments
+getName

+argumentType(index)

+addChid +getArgumentType(index)

+removeChild
+numChildren
+processCommand
+serailize
+deserialize

~

SimulationStructure StructuralElement StructuralMaterial Analysis StructuralSection
nodes elementType {?} constitutiveModelProperty state sectionType {?}
elementPropery constitutiveType {?} structure sectionProperty
sections
+getConstitutive Type FoetState
+getNodeConnectivity +solve ;
+addNode +getElementType +getMaterialProperty +step +getSectionType
+addComponent +getSectionGroup(index) +stressFromStrain +getSectionProperty
+getNodes .
+getComponents(iype) +getNumSections

+getRestoringForce
-localSpaceTransform A
0.*
StructuralNode % FiberSection ElasticSection

position TrussElement BeamColumnElement

contrainedDOFS

statedata

+getPosition

+getConstraints

+getStateDat: €]

9 ..,m:ggp; HardeningMaterial ConcreteMaterial

/1

ViscousMaterial ElasticMaterial

Fig. 6.3 Named Composite Hierarchy.

6.3.3 Data Streaming and Serialization

Specific functionality we wish to include is that the configuration and data can be saved to
disk, or sent over the network to another machine. This can be done to save the simulation
state and restart it later, or to run a simulation on one machine while visualizing it on another
machine. Thus most, if not all, of the structural and simulation components should be able
to serialize and unserialize themselves to a data stream. The data stream can represent disk
access, network data traffic, or perhaps some other sort of data process. The specific format
of the serialization is stream dependent; for instance, one type of data stream may record
everything as XML records and ASCII strings, while another may use compact or even lossy
representations.
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Fig. 6.4 State Construction.
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Fig. 6.5 Stiffness Matrix Assembly.
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6.3.4 Configuration and Input

To configure the structure, integration, and data recording, some sort of simple scripting is
required. The scripting should be:

e Compact, so that it does not require a lot of source code to add to the program and does
not increase the program size noticeably.

e Simple, so that uninitiated users can quickly grasp basic usage and perform simple analysis
without reading a manual on how to use the language.

e Portable, so that it can be used on multiple platforms such as Windows, RT-Linux, and
others without a large amount of work to switch platforms.

A good fit for these requirements is to use Lua (Lua 2009) for the default scripting language.
To expose component functionality to Luaall objects should be able to process Command
objects, which are typically generated by script commands. For instance, the Lua script

analysis.setDeltat (0.02) -- set dt to be 20mS
analysis.advanceStep(10) -- do 10 timesteps

Will send two Command objects to the Component named “analysis,” with the first Com-
mand specifying a new d§t and the second command advancing the analysis by 10 timesteps.

6.3.5 Domain and Structural Assembly

e A structure consists of assembly components: nodes, elements, constitutive models, sec-
tion models, and forcing functions (excitation).

e Components can be added in any order up until the structure is ”compiled”—that is, the
state variables are mapped and relevant matrices are constructed.

e Nodes contain position and constraint information. The total number of free and con-
strained degrees-of-freedom can be determined by calling appropriate methods of all nodes
in the structure.

e Elements are aware of what nodes they connect and what materials/sections they are
built from. Elements provide relevant matrices for simulation (stiffness, damping, mass)
and, based on current displacements at nodes, can provide the current restoring force.

e Constitutive models provide the relevant relations used by element computations. These
include stress/strain as well as damping and mass.

6.3.6 Analysis

e Analysis is specified by the IAnalysis interface, or the IDynamicAnalysis interface which
also provides functionality for timestepping.
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6.3.7 Timing and Synchronization

In order to control simulation timing for a real-time hybrid test, several semantics must be
available:

e Timing sources can be specified either as an OS-inherent timer or an externally triggered
timer.

e Synchronization is performed by waiting for time to pass as specified by a timing source,
or by waiting for a signal from a specific thread.

e Timing requirements can be attached to an Analysis in order to determine if computation
(or specific parts of the computation) violate timing requirements.

6.3.8 General Source Code Guidelines

The comment style is the JavaDoc (JavaDoc 2009) style, written to be compatible with
Doxygen (Doxygen 2009) documentation generation program. A sample is included in the
appendix.

Variable naming uses minimal Hungarian notation; specifically, static variables are pre-
fixed with s_, global variables are prefixed with g_, and local variables have no prefix. Local
and member variables are lowercase, while globals should be capitalized. Local variables and
members are typically not distinguished; if distinguishing the two is important, a member can
be explicitly pointed out using this. Capitalization is typically reserved for class names, not
instance variables. Examples:
statevariables
this->membervariable
g_errorstreanm
s_singleton

Method naming is in Camel Case-that is, words run together with words after the first word
capitalized. Method names are generally in the form “verbWordWordWord.” Examples:
void eatLargeMeal();
int getWildebeestCount () const;

bool isChuckNorris() const;

virtual Stream watchMidgetWrestling();
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Chapter 7

MERCURY VALIDATION

7.1 Simple 2D Truss Validation

7.1.1 Example 01
Fig [1]

Unit  =[ kN, mm' ], Material properties of all elements:
StMode =2, 2; Elastic material
Analysis = 'Static ' Cross-sectional area(A)00mnt
lteration = ‘Linear ' Elastic modulus (E} 200 kN/mni
nodcoord ={1, 0,0;
2, 1500, 0;
3, 3000, O;
4, 1500, 2000;
5, 3000, 2000};
constraint ={3, 1, 1;
51, 1};
2m elements = {1, 'Simple 2DTruss' 1, 2,{1}%
2, 'Simple2DTruss' ,2,3,{1}
3, 'Simple2DTruss' 1, 4,{1}%
4, 'Simple2DTruss' ,2,4,{1}
5, 'Simple2DTruss' ,3,4,{1}
6, 'Simple2DTruss' ,4,5{1}}
sections ={1, ‘General " ,{1, 400, 0, 0, O} };
materials = {1, ‘Elastic ' ,200,0,{0}};
forces = { ‘NodalForce ", {1, 2, -30;
2,2, -20}
OutputData ={ 'NodalDisplacement .
'Ex01NodalDispl 01005’ ,{1,2,3,4,5};
‘NodalForce ' ...
'Ex01NodalForce 01t005' ,{1,2,3,45};

7.1.2 Example 02
Fig

Fig. 7.1 Simple 2D Truss EX 01
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Ex01 Static Linear - Simple2DTruss - - General - - Elastic NF ND
Ex-02 Static Linear - - Simple2DTruss - - General - - Elastic - - VNF
Ex03 Static Linear - - Simple3DTruss - - General - - Elastic - - VNF -
Ex04 Static Linear - - Simple4dDTruss - General - - Elastic - - VND -
Ex05 Static NR - ForceNorm Simple5DTruss - - General - - Elastic Hardening - NF -
Ex06 Static NR - ForceNorm Simple6DTruss - - General - - Elastic Hardening - VNF -
Ex07 Static NR - ForceNorm Simple7DTruss - - General - - Elastic Hardening - VNF -
Ex08 Static NR - ForceNorm Simple8DTruss - - General - - Elastic Hardening - VND -
Ex09 Static NR - ForceNorm Simple9DTruss - - General - - Elastic Bilinear - VNF -
Ex10 Static NR - ForceNorm Simplel0DTruss - - General - - Elastic ModifiedGMP - VNF -
Ex11 Static NR - ForceNorm Simplel1DTruss - - General - - AnisoDamage - - VND -
Ex12 Static IS - ForceNorm Simple12DTruss - - General - - ModifiedKP - - VND -
Ex13 Static NR - ForceNorm Simple2DTruss - - General - - Hardening - - VNF -
Ex14 Static NR - ForceNorm Simple2DTruss - - General - - Hardening - - VNF -
Ex15 Static NR - ForceNorm Simple2DTruss - - General - - Hardening - - VNF -
Ex16 Static NR - ForceNorm Simple2DTruss - - General - - Bilinear - - VND -
Ex17 Static NR - ForceNorm Simple2DTruss - - General - - Bilinear - - VND -
Ex18 Static NR - ForceNorm Simple2DTruss - - General - - Modified GMP - - VND -
Ex19 Static NR - ForceNorm Simple2DTruss - - General - - Modified GMP - - VND -
Ex20 Static NR - ForceNorm Simple2DTruss - - General - - ModifiedKP - - VND -
Ex21 Static NR - ForceNorm SB2DBC - - General - - Elastic - - VNF VND
Ex22 Static NR - ForceNorm SB2DBC - - General - - Elastic - - VND VEDF
Ex23 Static NR - ForceNorm FB2DBC - - Fiber - - ModifiedKP ModifiedGMP - VNF VND
Ex24 Static NR - ForceNorm FB2DBC - - Fiber - - ModifiedKP Modified GMP - VNF VND
Ex25 Static NR - ForceNorm FB2DBCNI - - Fiber - - ModifiedKP ModifiedGMP - VNF VND
Ex26 Static NR - ForceNorm FB2DBCNI - - Fiber - - ModifiedKP ModifiedGMP - VNF VND
Ex27 Static IS - ForceNorm FB2DBC - - Layer - - Hardening - - NF VND
Ex28 Static IS - ForceNorm FB2DBC - - Layer - - Hardening Bilinear - NF VND
Ex29 Static IS - ForceNorm FB2DBC - - Layer - - Modified GMP Bilinear - NF VND




\/
10kN to 100kN

Unit =[ kN, mm' 1; . .
StMode  =[2, 2J; Mateflal properties of all elements:
Andlysis = ‘Static' Elastic material
lteration = ‘Linear" Cross-sectional area(A400mnt
nodcoord ={1, 0,0; Elastic modulus(E) 200 kN/mn?
2, 1500, O;
3, 3000, O;
4, 1500, 2000;
5, 3000, 2000}
2m constraint = 3,1, 1
51,1}
elements ={1, 'Simple 2DTruss ' 1,2,{1}
2, 'Simple2DTruss "' 2,3,{1}
3, 'Simple2DTruss"' 1,4,{1}
4, 'Simple 2DTruss ' 2,4,{1}
5, 'Simple2DTruss' 3,4,{1}
6, 'Simple2DTruss"' ,4,5,{1}}
sections ={1, ‘General" {1, 400, 0,0, O} }
materials = {1, ‘Elastic ' , 200, 0,{0}};
forces ={ 'VariableNodalForce ' £{1,2{-10,-20,-30,...
-40,-50,-60,-70,-80,-90,-100}} };
OutputData ={  'NodalDisplacement *

'Ex02NodalDispl 01to05*

{1,2,3,45}};

‘NodalForce '

,{1,23,4 5},

'Ex02NodalForce 01to05"

7.1.3 Example 03
Fig [[3]

7.1.4 Example 04
Fig [4]

7.1.5 Example 05
Fig

7.1.6 Example 06
Fig

7.1.7 Example 07
Fig [I.7]

7.1.8 Example 08
Fig [.8

7.1.9 Example 09
Fig [l

Fig. 7.2 Simple 2D Truss EX 02
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v 20kN to 200kN

Unit =[ 'kN, mm' ];
StrtMode =[2,2];
Analysis = ‘Static ' Material properties of elementl, 2, 3 and|4 :
lteration = ‘Linear ' Elastic material
Unit = kN, mm' ] Cross-sectional area(A)400mnt
StrMode =12, 2]; Elastic modulus(Ey 190 kN/mnt
N Analysis = ‘Static ; Material properties of element5 and 6
Iteration = ‘Linear ' Elastic material
nodcoord ={1, 0,0; Cross-sectional area/A)500mnt
2, 1500, 0; Elastic modulus(Ey 200 kN/mnf
3, 3000, 0;
4, 1500, 2000,
5, 3000, 2000};
2"30nstraint ={3,1,1;
5,1, 1}
elements ={1, 'Simple 2DTruss' ,1,2,{1}
2, 'Simple2DTruss' ,2,3,{1};
3, 'Simple2DTruss’ ,1,4,{1};
4, 'Simple2DTruss’ ,2,4,{1}
5, 'Simple2DTruss' ,3,4,{2};
6, 'Simple2DTruss' ,4,5,{2}}
sections ={1, ‘General" ,{1,400,0, 0, O},
2, 'General® ,{2,500,0, 0, O};
— materials = {1, ‘Elastic * , 190, 0, {0};
2, ‘Elastic’ , 200, 0, {O}};
forces = { 'VariableNodalForce ' £{1,2{-20,-40,-60,-80,-100,-120, ..
-140 -160 -180,-200}} };
OutputData ={  'NodalDisplacement '

'Ex03NodalDispl 01to05"
'Ex03NodalForce 01t005'

‘NodalForce *

" {12345
{1.2345);

Fig. 7.3 Simple 2D Truss EX 03

Unit =] kN, mm' J;
StrMode  =[2, 2]; Material properties of elementl, 2,3 and 4 :
Analysis = ‘Static' Elastic material
lteration = ‘Linear' Cross-sectional area(AX00mn?
nodcoord  ={1, 0,0; Elastic modulus(Ey 190 kN/mnf
2, 1500, C; Material properties of element5 and 6 :
3, 3000, 0; Elastic material
g’ ;% g%} Cross-sectional area&)500mn?
constaint = {1, 0,1 Elastic modulus(Ey 200 kN/mn?
3,1,1;
51,1}
elements ={1, ‘Simple 2DTruss' ,1,2,{1}
2, 'Simple 2DTruss' 2, 3,{1};
3, ‘Simple 2DTruss' 1, 4,{1};
4, 'Simple 2DTruss" ,2,4,{1}
5, 'Simple 2DTruss' ,3,4,{2};
6, 'Simple 2DTruss' ,4,5{2}}
sections ={1, ‘General" {1, 400, 0, 0, O};
2, ‘'General' ,{2,500,0,0,0};
1.5m 1.5m
materials = {1, 'Elastic’ , 190, 0,{0};
2, 'Elastic' 200, 0,{0};
2mm to 20mn forces ={  'VariableNodalDisplacement {1242, 4,6, -8 -
10, -12, -14, -16, -18, -20} };
OutputData ={  'NodalDisplacement "
'Ex04NodalDispl 01to05' {1,2,3,4,5);
‘NodalForce * ...
'Ex04NodalForce 01t005' {1,234 .5);

Fig. 7.4 Simple 2D Truss EX 04
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2m

Y 90kN

Material properties of elementl, 2, 3and 4 :
nodcoord  ={1, 0,0; Elastic material
2,1500,0; Cross-sectional area(A400mn?
3,3000,0; Elastic modulus(E)- 190 kN/mn?
4 1500-2000’_ Material properties of element5 and 6 :
o 5 3000, 2000%; Hardening material
constraint ={3, 1, 1'5 11y Cross-sectional area(A)500mnf
clements ={1,  ‘Smple2DTruss' ,1,2,{1}; Elastic modulus(E} 200 KN/mn
2, ‘Smple2DTruss' 2, 341} Initial yield stressf,o) - 0.25 KN/mn?
3, 'Simple 2DTruss' . 1,4,{1% Isotropic modulus (Hisoy 50 kN/mnf
4, ‘Simple2DTruss' 2, 4,{1}; Kinematic modulus (Hkiny 0 kN/mn?
5, 'Simple2DTruss' ,3,4,{2)
6, 'Simple 2DTruss' ,4,5,{2}}
sections ={1, ‘General' {1, 400, 0, 0, O},
2, 'General' {2,500, 0,0, O};
materials = {1, ‘Elastic * , 190, 0,{0};
2, ‘Hardening ' ,200,0,{0.25,50, O}};
forces = { ‘NodalForce * {1, 2,-90;
2,2 33
OutputData ={ ‘NodalDisplacement * , 'Ex05NodalDispl 01t005' ,{1,2,3,4,5}
‘NodalForce ' 'Ex05NodalForce 01to05' .{12,34,5}
‘SectionAxialForce 'Ex05SectionAxialForce 06 {16}
‘SectionAxialDeformation , 'Ex05SectionAxialDefor 06" {L.6kk

Fig. 7.5

Simple 2D Truss EX 05

¥ 10kN to 200kN

nodcoord = {1, 02' 0'500 o Mate(ial propn_enies of elementl, 2, 3 and 4|
3' 3000' 01 Elastic material
4: 1500: 2000: Cross-sectional area(A)400mn?
3000 2000}; Elastic modulus(E 190 kN/mn?
constraint ={3,1, 1; Material properties of element5 and 6 :
51,1} Hardening material
elements = {1, 'Simple 2DTruss' 1, 2,{1}; Cross-sectional area(A)500mmi
2, 'Simple 2DTruss "' ,2,3,{1} Elastic modulus(Ey 200 kN/mnt
3, 'Simple 2DTruss" ,14,{1} Initial yield stressf,,) - 0.25 KkN/mnt
4, 'Simple 2DTruss' 2, 4,{1}; Isotropic modulus (Hiso) 50 kN/mn?
5, 'Simple 2DTruss' , 3,4,{2} Kinematic modulus(Hkin} 0 kN/mn?
6, 'Simple 2DTruss'  , 4,5,{2}};
sections = {1, ‘General* {1, 400, 0, 0,0};
2, ‘General' ,{2,500,0,0,0};
materials ={1, "Elastic ' , 190, 0,{0};
2, 'Hardening’ 200, 0,{0.25, 50, O}};
forces = { ‘VariableNodalForce * {1,24{-10,-20,-30,-40,-50,-60,-70,-80,-90,-100,...
-110, -120, -130, -140, -150, -160, -170, -180, -19 s 133
OutputData ={  'NodalDisplacement ' 'Ex06NodalDispl 01to05" ,{12,3.4,5);
'NodalForce * 'Ex06NodalForce 01t005' {1,345}
'SectionAxialForce 'Ex06 SectionAxialForce 06" {16}
‘SectionAxialDeformation ' , 'Ex06SectionAxialDefor 06' {1.6})

Fig. 7.6

Simple 2D Truss EX 06

\j
10kN to 200kN

unt  =[ KN, mm' ],
StMode  =[2, 2];

Analysis = 'Static' H
Iteration = 'NewtonRaphson *
Convergence =  ‘ForceNorm ' ;
StrMiter = 100;

Tolerance = 1.0e-8;

Material properties of element1, 2, 3and 4 :
Elastic material

Cross-sectional area(A)00mni

Elastic modulus (E} 190 kN/mnf
Material properties of element5 and 6 :

nodeoord = {1, OZ.Oism o Cross-sectional area(A)500mnt
33000 0; Elastic modulus (E} 200 kN/mnf
4, 1500, 2000; Initial yield stressfi;) —0.25 KN/mnf
5, 3000, 2000}; Isotropic modulus (Hiso} 25 kN/mnt
constraint = {3, 1,1; Kinematic modulus (Hkiny 25 kN/mn?
51,1}
elements ={1, . im}p\e 2DTuss' 1, 2,{1};
2, 'Simple 2DTruss' 2, 3,{1}
3, 'Simple 2DTruss' 1, 4,{1};
4, 'Simple 2DTruss' 2, 4,{1};
5, 'Simple 2DTruss' 3, 4,{2};
6, 'Simple 2DTruss' ,4,5{2}}
sections ={1, ‘General* {1, 400, 0, 0, 0};
2, 'General' ,{2,500,0,0,0}8;
materials ={ 1, 'Elastic’ , 190, 0,{0};
2, 'Hardening' ,200,0,{0.25,25, 25}};
forces ={ "VariableNodalForce * {1,2{-10,-20,-30,-40,-50,-60,-70,-80,-90,-100 , -1 10.,...
-120, -130, -140, -150, -160, -170, -180, -190, -20 [0]331
OutputData ={  'NodalDisplacement * ., 'Ex07NodalDispl 01t005" .{1.2,3,4,5)
‘NodalForce * , 'Ex07NodalForce 01to05" {12345
‘SectionAxialForce , 'Ex07SectionAxialForce 06' {16}
‘SectionAxialDeformation ' 'Ex07 SectionAxialDefor 06" {165}

Fig. 7.7

Simple 2D Truss EX 07
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Unit =[ kN, mm' ]
StrtMode  =[2, 2];

Analysis = 'Static' H N
lteration = ‘NewtonRaphson ' ; Elastic material

Convergence =  'ForceNorm ' ; Cross-sectional area(A)400mni
StrMiter = 100; Elastic modulus(Ey 190 kN/mn}

—F Tolerance =1.0e-8;

Material properties of elementl, 2, 3 and 4

Material properties of element5 and 6

1.5m

6mm to 60mn

1.5m

Hardening material
nodcoord ={1, 0,0; Cross-sectional area(A)500mni
2, 1500, 0; Elastic modulus(Ey 200 kN/mn}
3, 3000, 0; Initial yield stressfyo) — 0.25 kN/mnf
4, 1500, 2000; Isotropic modulus (Hisoy 25 kN/mnf
) 5, 3000, 2000}; Kinematic modulus (Hkiny 25 kN /imn?
om constraint = {3, 1,1;
51,1}
elements ={1, ‘Simple 2DTruss ' ,1,2,{1}
2, 'Simple 2DTuss' 2, 3,{1};
3 3, 'Simple 2DTruss" ,1,4,{1}
4, 'Simple 2DTruss" ,2,4,{1}
- 5, 'Simple 2DTruss" ,3,4,{2}
6, 'Simple 2DTruss" ,4,5{2}}
sections ={1, ‘General ' ,{1, 400, 0, 0, O};
2, ‘'General' ,{2,500,0,0,0};
materials ={1, 'Elastic’ , 190, 0,{0};
2, 'Biinear’ 200, 0,{0.25,0.2, 0, 55, 0, 55}};
forces = { ‘VariableNodalForce ' {1,2,{-10,-20,-30,-40,-50,-60,-70,-80,-90,-100 , -1 10,...
-120, -130, -140, -150, - 160, -170, -180, -190, -20 O}k
OutputData ={ 'NodalDisplacement ' 'Ex09NodalDispl 01t005' {12,345}
‘NodalForce * , 'Ex09NodalForce 01to05' ,{1,2,3.4,5};
'SectionAxialForce ' , 'Ex09SectionAxialForce 06" {16}
‘SectionAxialDeformation ' 'Ex09SectionAxialDefor 06" {1,6})

Fig. 7.8 Simple 2D Truss EX 08

1.5m

\/
10kN to 200kN

1.5m

Unit  =[ kN, mm" ];
StrMode  =[2, 2J;
f‘\:;z':ns =_ ‘i‘:\:\ﬁonRaﬁhson .o Material properties of element1, 2, 3and 4 :
— Convergence = 'ForceNorm' ' Elastic material
F StrMiter = 100: ! Cross-sectional area(Ay00mnt
Tolerance = 10e-8; Elastic modulus(E} 190 kN/mnf
Material properties of element5 and 6 :
nodcoord ={1, 0,0; Bilinear material
2,1500, 0: Cross-sectional area(A)500mnf
3,3000, 0; Elastic modulus(E) 200 kN/mnf
2m 4, 1500, 2000 Initial yield stressg,o) —0.25 kN/mni
5, 3000, 2000}; al=0, a2=55, a3=0, a4=55
constraint ={3, 1, 1;
51,1}
elements ={1, 'Simple2DTruss ', 1, 2,{1};
2, 'Simple2DTruss' 2, 3,{1}
3, 'Simple2DTruss' ,1,4,{1}
v 4, 'Simple2DTruss' 2, 4,{1}
5, 'Simple2DTruss' ,3,4,{2};
6, 'Simple2DTruss " ,4,5{2}
| sections ={1, ‘General' {1, 400, 0,0, O}
2, 'General' ,{2,500,0,0,0};
materials ={1, ‘Elastic * , 190, 0,{0};
2, 'Bilinear’ ,200,0,{0.25,0.2,0, 55, 0, 55}};
forces ={ ‘VariableNodalForce * {1,24{-10,-20,-30,-40,-50,-60,-70,-80,-90,-100, -1 10,...
-120, -130, -140, -150, -160, -170, -180, -190, -20 3
OutputData ={  'NodalDisplacement ' , 'Ex09NodalDispl 01t005" {12345}
‘NodalForce ', 'Ex09NodalForce 01to05' ,{1,2,34,5}
'SectionAxialForce ' , 'Ex09SectionAxialForce 06' {16}
‘SectionAxialDeformation * , 'Ex09SectionAxialDefor 06" {1.68)

Fig. 7.9 Simple 2D Truss EX 09
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7.1.10 Example 10
Fig

1.5m !

1.5m r
¥ 5kN to 150kN

nodcoord ={1, 0,0;

g' 015:) :\Elllaterial properlties of elementl, 2,3 and 4
i I astic material
constraint = {1, 1, 1’2' 01 Cross-sectional area(A)400mnf
311 Elastic modulus(E) 190 kN/mn?
elements ={1, ‘Simple 2DTruss ', 1, 2,{1}; Material properties of element5and 6 :
. 'Simple2DTruss' 2, 3,{1}}; GiuffreMenegottoPinto material
sections ={ 1, ‘General' {1, 1,0, 0, O}}; Cross-sectional area(A)500mnt
materials = {1, 'AnisotropicDamage 1D’ ,1300, O,... Elastic modulus(E) 200 KN/mnf
{03, 0,006, 70, 0.03, 1-LE-10}; Initial yield stresst,o) — 0.25 kN/mnf
Dispinput = load( 'Ex11.txt % RO = 15, n=0, cR1=0.925, cR2=0.15
row = size (Displnput ,1); al=0, a2=55, a3=0, a4=55
for i=Lrow
DispCell {i} = Displnput (j);
end
forces ={ 'VariableNodalDisplacement {3, 1, DispCell } };
OutputData ={  'NodalDisplacement * , 'Ex11NodalDispl 01t002' {123}
‘NodalForce ', 'Ex11NodalForce 01to02' ,{1,2,3}
'SectionAxialForce ' 'Ex11SectionAxialForce 01' {1,1}
'SectionAxialDeformation " 'Ex11SectionAxialDefor 01" RENNSH

Fig. 7.10

7.1.11 Example 11
Fig [11]

Simple 2D Truss EX 10

Nodal Displacement
(Node 3 - X direction)

sep
nodcoord ={1, 0,0;

2,05,0;

3, 1,0}
constraint ={1,1, 1;

2,0,1;

3,1, 1
elements ={1, ‘Simple 2DTruss ', 1, 2,{1};

2, 'Simple 2DTruss . 2,3,{1};

sections ={1, ‘General' ,{1,1,0,0, O}};
materials ={1, ‘AnisotropicDamage 1D’ , 1300, 0,{0.3,
0.006, 70, 0.03, 1-1E-10}};
Displnput =load ( "Ex1Ltxt’ );

row = size (Displinput ,1);

Cross section

Material properties of all elements:
AnisotropicDamage1D
Cross-sectional area(A)1

Elastic modulus(Ey 1300

1 Initial elasticity thresholé() — 0.006
Damage coefficient A70
Damage coefficient-20.03
Damage limit- 1.0
[ —
1
1 2 Displacement
—
A A A
>3 »le >
0.5 0.5
for i=Zlrow
DispCell {i} = DispInput (i);
end
forces ={ "VariableNodalDisplacement ' 43, 1, DispCell }
%
OutputData ={  ‘NodalDisplacement * ,
‘Ex11NodalDispl 01t002' {123},
‘NodalForce '/Ex11NodalForce 01to02' {123}
'SectionAxialForce ' o
'Ex11SectionAxialForce 01' AL1)
'SectionAxialDeformation *
'Ex11SectionAxialDefor 01" AL

Fig. 7.11  Simple 2D Truss EX 11

7.1.12 Example 12
Fig 12
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Cross section

Displacement
—»

Nodal Displacement Material properties of all elements:
(Node 3 - X direction) ConcreteLinearTensionSoftening
o005 Cross-sectional area(A)L
Tension modulus (Ety 444.444
. 1 | Compressive yield stress} — -6
Compressive yield strainj —-0.003
Compressive ultimate stress) —-0.9
R Compressive ultimate straig() —-0.02
5 Coefficient)) —0.027719
§ oo l[e———>] Tensile yield stress() — 1.2
H 1
1 2
A A A
o o . : w s w < e N
0.5 0.5
. materials ={1, ‘ConcreteLinearTensionSoftening , 444.444, 0,{-6, -0.003, -
Unit  =[; 0.9,-0.02,0.027719, 1.2}};
StMod 2.2 Displnput = load( Ex12T.xt* )
e =[2,2]; o _
Anaysis = Static’ row = s-lze (Displnput ,1);
Iteration = ‘InitialStiffiness * R for i=1lrrow
Convergence =  'ForceNorm * Di 11{i} = Displin i):
StMiter = 100; spCell{it = Dispinput(h;
Tolerance = 1.0e-8; end
nodcoord  ={1, 0’20505 o forces = { "VariableNodalDisplacement' {3, 1, DispCell} };
3 1,0) OutputData ={  'NodalDisplacement'
constraint ={1, 1, l:2 o1 'Simple2DTrussEx12TNodalDispl01to02' ,{1,2,3}
311y ‘NodalForce' , 'Ex12TNodalForce01to02' ,{1.2,3}
elements ={1, ‘Simple2DTruss' 1, 2,{1} 'SectionAxialForce' , 'Ex12TSectionAxialForce01' ,{1,1}
sections ={1, 2 él;;;lreajleTn’J(si 1,0 S g.}}(;l}}, ‘SectionAxialDeformation’ , 'Ex12TSectionAxialDefor01'

{L1E)

Fig. 7.12  Simple 2D Truss EX
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7.1.13 Example 13 to 15
Fig [[13]

Unit  =[
StrMode =[2,
Analysis =

Iteration =

StrMiter = 10;

constraint = {1,

elements ={1,
sections ={1,
materials = {1,
Forcelnput = lo:

i= lrow
ForceCell
end

forces ={
OutputData = {

for

{L1%

Convergence =

kN, mm' J;
2;
'Static*
‘NewtonRaphson ' ;
‘ForceNorm ' ;

Tolerance = 1.0e-8;
nodcoord ={1, 0,0;

2, 100, O} tmm
1,1;
2,0,1}
'Simple 2DTruss' 1, 2,{1}}
‘General' ,{1,1,0,0,0}; [———»|
'Hardening ', 200,0,{0.25, 50, O} };
ad ( 'Ex13.txt" ) Imm

row = size(Forcelnput ,1);

{it = Forcelnput (i);

"VariableNodalForce * {2,1,ForceCell }};
‘NodalDisplacement * , 'Ex13NodalDispl 02 {2 1 2 Forc.e
‘NodalForce ' , 'Ex13NodalForce 02' A2 ‘ ﬁ
'SectionAxialForce * , 'Ex13SectionAxialForce 01' {11}
'SectionAxialDeformation , 'Ex13SectionAxialDefor 01' B

Cross section

Force [kN]: 0—0.2-0—-0.3—-0—0.4—>0—-0.5->0

[P »!
~ l

100mm

Ex 13 : Isotropic Material ; Ex 14 : Kinematic Maté ; Ex 15 : Hardeing Material ;
Material properties of all elements : Hardeningeriat
Cross-sectional area (A)1
Elastic modulus (E} 200 kN/mnt
Initial yield stress @,0) — 0.25 KN/mnf
Isotropic modulus (Hiso} 50 kKN/mn?, OkN/mn?, 25 kN/mnt
Kinematic modulus (Hkin} 0 kN/mn?, 50kN/mnf, 25 kN/mnf

Fig. 7.13 Simple 2D Truss EX 13 to 15

Fig [[14] Results for Isotropic Material (Ex 13) Fig ?? Results for Kinematic Material (Ex
14) Fig 7?7 Results for Hardening Material (Ex 15)
Fig Mercury Matlab results for examples 13 to 15. Fig ?? Full results for examples 13

to 15.

7.1.14 Example 16 and 17

Fig 77

Fig[TI6] Results for Bilinear Material OpenSees/Mercury Matlab comparison Fig 7?7 Results
for Bilinear Isotropic Material OpenSees/Mercury Matlab comparison.

Fig [[17 Mercury Matlab Billinear/Bilinear Isotropic comprasion.

Fig [[ I8 Full results for examples 16 and 17

7.1.15 Examples 18 and 19

Fig [(. 19 Fig 7?7
Fig

166



Nodal force-displacement Nodal force-displacement
(Node 3 - X direction) (Node 3 - X direction)
Mercury opic = =0 pi ——MercuryMatlabKinematic = = 0| inemati
15 05
04 |
! 03 77/
02 VA4
. so 777 7 7 77
£ £ Var 0 A T AV I 4
g g . NSNS AL
% o5 * a /V/ N/
: V.Y
04 ,Lb
-15 -0,5
08 06 04 02 0 02 04 06 08 08 06 04 02 0 02 04 06 08
Displacement [mm] Displacement [mm]
Nodal force-displacement
(Node 3 - X direction)
MercuryMatlabCombinedHardening = = O| binedHardening
15
1
05
H
]
4
o
* 05
-1
15
-0,8 -0,6 0,4 -0,2 0 02 04 06 08
Displacement [mm]

Fig. 7.14 Ex13 Isotropic Model, Ex 14 Kinematic Model, Ex 15 Hardening Model

Force [kN]

Section axial force-deformation

Nodal force-displacement

Deformation [mm/mm]

Displacement [mm]

(Element1) (Node 3 - X direction)
——MercuryMatlablsotropic =——MercuryMatlabKinematic Mercur pi MercuryMatlabKinematic
Mercury| {ardening Mercun lab binedHardening= = O opic
15 | = = OpenSeesKinematic = = OpenSeesCombinedHardening
1 15
1
05
— — z »
0 =3
= = o —
g —
05 £ 05
1 -1
15 15
-0,008 0,006 -0,004 -0,002 0 0,002 0,004 0,006 0,008 08 -0,6 -0,4 0,2 0 02 04 06

08

Fig. 7.15 Example 13 to 15 Mercury Results, Complete Results for Example 13 to 15
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Nodal force-displacement
(Node 3 - X direction)

—MercuryMatlab = = OpenSees Nodal force-displacement
05 (Node 3 - X direction)
04 7 08 —— MercuryMatlablsotropic = = OpenSeeslsotropic

:2 /Y] * B 4/‘ 7/
71711111 . /7 /4
° /11 o V7//))//4
o ST 77/ ,é/// /

/
Z
ol L /

Force [kN]

Force [kN]

/4

0,5

08

-0,8 -0,6 -0,4 -0,2 0 0,2 0,4 0,6 08
-08 -0,6 -0,4 -0,2 0 0,2 0,4 0,6 0,8

[mm]

Displacement [mm]

Fig. 7.16 Ex 16 Bilinear material for OpenSees and Mercury, Ex 17 Bilinear Isotropic Material
for Opensees and Mercury

Section axial force-deformation
(Element1)

= MercuryMatlab  ===MercuryMatlab Isotropic

04 Va /A

/i /
/

0 77 y

7

-0,2 / /

04 Z 2

-0,6 /

08 |

-0,008 -0,006 -0,004 -0,002 0 0,002 0,004 0,006 0,008

N\

Force [kN]

Deformation [mm/mm]

Fig. 7.17 Ex16 and Ex17 Billinear/Bilinear Isotropic comprasion.

Nodal force-displacement
(Node 3 - X direction)

= MercuryMatlab === MercuryMatlablsotropic = = OpenSees = = OpenSeeslsotropic

0 r&% /,,
W/ /
I 4

/
Y/ )/
[

08 0,6 04 02 0 02 04 06 038

Force [kN]
o
~

Displacement [mm]

Fig. 7.18 Complete Results for Examples 16 and 17

168



Nodal force-displacement
(Node 3 - X direction)

Nodal force-displacement

(Node 3 - X direction) 08
Mercury 1) Mercury ) ===OpenSees P
05
-
03

0,2

0,1 /
; 7.

o1 A L7
s ® :

02 Z]

03 /. o

|
04
| |

\*\

Foree k]

Force [kN]

s
05
08 06 04 02 0 02 04 06 08 8
as o8 o8 o2 o 0z os os o8
Displacement [mm] —
Fig. 7.19 Example 18, Example 19 Isotropic Material
Section axial force-deformation
(Element1) N
Nodal force-displacement
o8 (Node 3 - X direction)
& - S —— L - Mercury 1) Mercur opic(n=1)
Mercury ) Mercur opic(n=0)
04 = = OpenSees = = OpenSeeslsotropic
02 08
- sy 06
) == 04
& = Z w
=
02 = o
4
s 2 < 2 o
= 04
o5 | | 06 |
08
o8 -08 0,6 04 0.2 0 02 04 06 08
0008 0005 0008 o002 o o002 000 ome 0008 3
Deformation fmm/mm) Displacement [mm]

Fig. 7.20 Example 18 and 19 Section Axial force/Deformation,Full Results for examples 18
and 19
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7.2 Beam Column Validation

7.2.1 Example 21
Fig [T21]

Gravity
2000 Kips

Unit = ‘kip, in*
StrMode = [2, 3;
Analysis = 'Static
Iteration= ‘NewtonRap
Convergence=
StrMiter =100;
Tolerance=1.0e-8;
nodcoord ={1, 0,0;
2, 0,432
constraint={1,1, 1,1
2,1,0,0}

Displacement
Control

elements= {1,
sections={1,
materials={ 1,
Displnpu(1:10) =0;
for i=11:1010

0.1in to 100 i

‘Elasti

end
row = size(Displnput2);
for i=1row
DispCel{i} = DispInpufi
end

for i=11:1010
Forcelnpu(i) =-2000;
end
row = size(Forcelnput2);
for i=1row
ForceCel{i} = Forcelnpi
end
forces={

432 in

OutputData={ 'NodalDis|

'SectionA:
'SectionM

‘StiffnessBased2DBeamColumn
‘General

Forcelnpu(1:10) = [-200, -400, -600, -800, -1000,

‘VariableNodalDisplacemerit
VariableNodalForce

‘NodalForcé

I

hsor ;

‘ForceNorm

i

1,2, {1 1%
, {1, 3600000000 0, 0, 1080000}};

c ,4227,0, {0}};

DispInpu(i) = DispInpu(i-1)+0.1;

):

-1200, -1400, -1600, -1800, -2000];

uti);

{2, 1, DispCel};
{2, 2, ForceCel} };
placement , 'Ex21NodalDispD1to02"
, 'Ex21NodalForced1to02 L {12}
, 'Ex21SectionAxialForc®1'
, 'EX21SectionMomen®1' {11y

L2

xialForce
oment

L1

Properties of element 1: Elastic material

Cross-sectional area (A) = 3600000000 i
Moment inertia (J) = 1080000 if
Elastic modulus (E) = 4227 kipsfin

Fig. 7.21 Example 21

7.2.2 Example 22
Fig[[.22]

7.2.3 Example 23 to 26

Fig 23]
Fig
Fig
Fig
Fig
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Uniform force

Displacement
Control

0.1in to 10 ir
—3

432 in

i i Unit =[ ip,in'
7.94 Kipsfir Svods = .31
Analysis = Static
Iteration= NewtonRaphsori ;
Convergence= ‘ForceNorm ;
StrMiter= 10;
Tolerance= 10e-8;
nodcoord ={1, 0,0;
2,504, 0;
3. 0,432
4,504, 432},
constraint={1, 1, 1,1;
2,111
3,10,0}
elements= {1, ‘StiffnessBase@DBeamColumn 1,3, {1, 1};
'StiffnessBase@DBeamColumn .2,4,{1, 1)
‘StiffnessBase@DBeamColumn  , 3,4, 2, 1}};

sections= {1, ‘General {1, 360000000Q 0, 0, 1080000};
2, 'General {1, 5760000000 0, 0, 4423680} };
materials= {1, Elastic ,4227,0, 0}}
Displnpu(1:10) = 0;
for i=11:110
Displinpu(i) = Dispinpu(i-1)+0.1;
end
row = size(DispInput2);
for i=2Llrow

DispCelli} = DispInpuf();
d

N
EleForcelnpu(1:10) = [0.794:-0.794:7.94]

for i=11:110
EleForcelnpuf) =-7.94;
nd
row = size(EleForcelnpuf2);
1 2 for i=1irow
EleForceCel{} = EleForcelnpu(i);
en
forces={ 'VariableNodalDisplacemert {3.1, DispCel};
| | ‘VariableElementDistributedForce 3,2, EleForceCel};
< i > OutputData={ ‘NodalDisplacement , 'Ex22NodalDispD1tc04’ {1,234}
504 in ‘NodalForcd , 'Ex22NodalForced1to0d  , {1,2,34}}
Properties of element 1 and 2: Elastic material
Cross-sectional area (A) = 3600000000 in
Moment inertia () = 1080000 if
Elastic modulus (E) = 4227 kipsfin
Properties of element 3: Elastic material
Cross-sectional area (A) = 576000000 in
Moment inertia (1) = 4423680 ifi
Elastic modulus (E) = 4227 kipsfin
Fig. 7.22 Example 22
Convrgences
Comaeszi:Ouphor
Gravity Miter =
2000 kips
Displacement € s@72.
Control n
) > M ' G2 sm 25575 fondy, 751
0.4321in to 4.32il Saze0.125575( ow), 78]
R - fiberinpufccount ,1:4) = L, 56.25, 28.125:3.75'( row-1), -225).
(4=0.4321in) = "
)
N I 30, dﬁ, - Scount=scount + I
4 4 30) 4@15in>0 |46 fiberinpu(scount 1:4) = [2, 2.25, 25-50%(rowe1), 2 5-125*(ol-1));
SoM end
Cross section A-A niiber= size(fiberinput);
fiercel(iiber, co} = fiberinpuifibercol);
.| Properties of element 1: FlexibilityBase2DBeam@aiu g
432 nip=5 Chions=,  Fwer . hecel;
materials={ 1, ‘ConcreteLinearTensionSoftenirig . 280, 0, {-4-0.003-08,-001,0.1,0.56};
Material properties: ConcreteModified KentPark model GiuffreMenegotioPint 29000, 0, (6.8, 0.01, 18,1, 0,925, 0.15, 0,55, 0,55,0));

16@3.75ir

‘ConcreteLinearTensionSoftening
Ets, Density, sigma_c, epsilon_c, sigma_cu, epsidonLambda, sigma_t

280, 0, -4, -0.003, -0.8, -0.01, 0.1, 0.5
Steel- Modified GiuffreMenegottoPinto model

E, Density, sigma_yO0, b, RO, n, cR1, c®B,a2, a3, a4, sigma_init]

29000, O, 66.8,0.01, 18,0, 0.92550 0, 55, 0,55, 0|

Geometry properties: concrete fiber area = 60
steel fiber area =225

Dispinpu(12000
for i =2001:2100
Displnput) = Displnpuli-1+0.0432
nd

row= size(Dispinput2)
for i =Lrow
DispCel{i} = Dispinputi);
en
Forcelnpu(1:2000) = 1:-1:-2000];

for i =2001:2100
Forcelnpu(i) =-2000;

end
row= size(Forcelnpu):
for i =Lrow

ForceCelli} = Forcelnpufi)
end

forces= { ment

ispl 2.1, DispCel);
VariableNodalForce {2, 2, ForceCel} )

Fig. 7.23 Example 23
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kips.in' T

x4

Static

NewtonRaphsort ;
NewtonRaphsof

Convergence= “ForceNorni
ConvergenceEle= ‘DispNorni
Gravity o
2000 kips in nodcoord =(1, 0,0;
12 2, 0,432);
. constraint=(1,1, 1,1;
¥5in 2,1,0,0)
clements={1,  FlexbiltyBase@DBeamColum 1,2 (LS}
Displacement 4 - 116
Control coount = ccount +4;
- fiberinpu(ccount3, :4) = [1, 56.25,28.1253.75°( row1), 225]
. s fiberinpu(ccount2,1:4) = [1, 56.25, 28.125.3.75°( row-1). 75}
0.432in to 4.321i - 50 in fiberinpu(ccount, 1:4) = [1, 56.25,28.125.3.75°( rou-1), 75];
) fiberinpu(ceount ,1:4) = 1, 56.25, 26.125-3.75'( row1), 225
(A=0.4321in) ed
scount= ccount
for 2
A o o o [0 o =15
(-30,30): 30~ - ount = scount+ 1;
4 4@15 it 3035 in fiberinpu(scount14) = 2, 2.25, 25-50°(row-1), 2 5-125%col-D)
end
3 Cross section A-A iber= siza(fiberinputy
for ifiber=Lnfiber
for col=14
fibercel(iiber, co} = fberinpuifiber.cop;
. - a
232 Properties of element 1,2, 3: FlexibilityBased2 DB€olumn end "
2 in = fons={1,  Fiber _ fibercel);
» » niter=5 el T A sotenty 2900, (40008.08,00101.0561
Material properties ConcreteModified Kent-Park model Dispinpu(i2000) 20 ‘GiuffreMenegottoPintb ,29000, 0, {66.8, 0.01, 18, 1,0.925, 0.15, 0, 55, 0,55, 0});
. ; . N ispinpu o;
ConcreteLinearTensionSoftening for  i=2001:2100
2 Ets, Density, sigma_c, epsilon_c, sigma_cu, epstanLambda, sigma_{ o,y *P""P¢ =0ispinput-:0.0432
280, o, 4, -0.003, -0.8 001, 01, 0856 o sie0isinpu;
Steel- Modified GiuffreMenegottoPinto model , Dispcelh =Disinpu:
. 8 P
E, Density, sigma_y0, b, RO, n, cR1, cRB,a2, a3, a4, sigma_init| Forceinpu(1:2000) = F1:-1:-2000);
for =2001:2100
29000, O, 66.8,0.01, 18,0, 0.92550 0, 55, 0,55, O " Forcenputy - -2000;
16@3.75 ir en
1 Geometry properties: concrete fiber area = 60 for. :"f*,ia'“‘””“")‘
v steel fiber area =225 " ForceCel{i} = Forcelnputi).
forces= { placement {2,1, DispCel};
VariableNodalForce {2, 2, ForceCel} };
Fig. 7.24 Example 24
Tteration=
TterationEle=
Convergence= “ForceNorn
ConvergenceEle= ‘DispNorn
Gravity Sutter =10,
. 0e,
2000 kips nodeoord ={1, 0,0;
2, 0,432
constraint={1,1, 1, 1;
y 11,0,0%
" FlexibiltyBaseDBeamColumn 1208
Displacement 5% 1« s0
Control @0, ¥5in ceount = count + 4:
R 30) P fiberinpu(ccount3, :4) = [1, 56.25, 28.125.3.75%( row1), 225J;
. " fiberinpu(ccount2,1:4) = [1, 56.25, 28.125.3.75'( row1), 78]
0.432in to 4.32iI fiberinputcoount1. 1 5625, 28.1253.75°( rou-1), -75J;
. - fiberinpufccount ,1:4) = [1, 56.25, 28.125-3.75%( row-1), -225
(A=0.432in) - 50 in end
scount= ccount;
for row=12
A A Cle o oo (ed for col=15
30, - scount= scount + 1;
4 4 30) 4@15in>2 | 46in fiberinpu(scount 14) = [2,2.25,25-50"(1ow-1), 2. 5-125%Col-)};
30p end
Cross section A-A nfiber= sizelfiberinput1)
for ifiber = Linfiber
for col=1:4
fibercel(iiber, col = fiberinpuifivercol):
| Properties of element 1: FlexibilityBased2DBeamQuiiolter end
432in sections= (1, Fiber _ fibercel);
” materials={ 1, ‘ConcreteLinearTensionSoftenirlg . 280, 0, {-40.003-08,-0.01,0.1,0.56};
Material properties: ConcreteModified KentPark model epipua 2000y 2, C1EMETIOUGPIND 290000 6.8 0.0 18 1,0925,015.055, 055,01
. : Ny N ispinpu -
ConcreteLinearTensionSoftening i=2001:2100
Ets, Density, sigma_c, epsilon_c, sigma_cu, epsiionLambda, sigma_{ g 2P0 =Dispiput-+0.0432
280, 0, -4, -0.003, -0.8, -0.01, 0.1, 0B o= sze0ispimud
Steel- Modified GiuffreMenegottoPinto model DispCelli} = Dispinputi);
16@3.75 i E, Density, sigma_y0, b, RO, n, CR1, cRP,a2, a3, a4, sigma_init| Foceipu:2000 = f1:-1-2000}
=2001:2100
29000, O, 66.8,0.01, 18,0, 0.92550 0, 55, 0,55, 0| Forcelnpui) =-2000;
en
1 Geometry properties: concrete fiber area = 60 [
v steel fiberarea = 2.25 | Foreecelt)= Forceinouty
forces={ Displacement (2,1, DispCell;

VariableNodalForce {2, 2, ForceCel} };

Fig. 7.25 Example 25
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Kips i L

Static

hleration=  "NewtonRaphsorl
lerationEle= NewtonRaphson ;
Convergence= ‘ForceNornt
ConvergenceEle= DispNorml
StiMiter =10;

EleMite
Toleranct

gin nodcoord

. constraint=(1,1, 1
¥5in

Gravity
2000 kips

2,1,0,0)
elements={1,  FlexibilityBase®DBeamColumii L,2.{15k)

Displacement 4
Control ceount=coount + 4;
— —_— fiberinpu(ccount3,1:4) = [1, 56.25, 28.125-3.75"( row-1), 225];

5, 28.125-3.75'( row1), 75];

,28.1253.75%( row-1), -75];
1 56.25,28.125-3.75( row-1),-225];

fiberinpuccount2,1:4) = [1, 56.2:

0.432in to 4.32i - 50in fiberinpu(ccount,1:4)
R fiberinpufccount ,1:4)
(A=0.432in)

scount= ccount
for row=12
® o o o o for col=15

(30.30)

B & Seount=scount+ 1
4@15 it 3035 in Therinputscount 14) = p, 2.25, 25-50°(row-1),2 5125+cob1)
end

R end
3 Cross section A-A iber= siza(fiberinputy
for fiber=Linfiber
for col=14
fbercelifier, cof = fiberinpu(ifiberco;

Properties of element 1,2, 3: FlexibilityBased2 DBé&mlumnNolter

432in Fiber , fbercel);
materials={ 1, ConcreteLinearTensionSoftenirlg ,280,0,(-4,0.003-08,-001,01,056);

2, ‘GiuffreMenegottoPinto +29000, 0, {66.8, 0.01, 18, 1,0.925, 0.15, 0,55, 0,55 0});

Material properties ConcreteModified Kent-Park model Dispinpu1200
‘ConcreteLinearTensionSoftening for |=2001:2100
Ets, Density, sigma_c, epsilon_c, sigma_cu, epsitanLambda, sigma_{ ¢,y *P""P¢ =0ispinput-:0.0432
280, o, -4, -0.003, -08, 001, 01, 0856 o sie0isinpu;

Steel- Modified GiuffreMenegottoPinto model DispCelfi} = Dispinpu(i):
E, Density, sigma_y0, b, RO, n, cR1, cRR,a2, a3, a4, sigma_ini i:?:elnpu(lzﬂum:[ 12000}

@35 29000, O, 66.8,0.01, 18,0, 0.92550 0, 55, 0,55, 0l ""d oy 2000
. en

1 Geometry properties: concrete fiber area = 60 ;sij\ixle‘vig:cemwm‘

- steel fiber area 225 o ForeeCell= Forcelnpu(x
: en

forces= { I t 2,1, DispCell;
VariableNodalForce (2, 2, ForceCel} ),

>

Fig. 7.26 Example 26

Top node force-displacement
(X-direction)

=== Mercury Matlab (FlexiblityBased2DBeamColumn - 1 element)
——Mercury Matlab (FlexiblityBased2DBeamColumn -3 elements)
===Mercury Matlab (FlexiblityBased2DBeamColumnNolter -3 elements)
== Mercury Matlab (FlexiblityBased2DBeamColumnNolter -1 elements)
== Q0penSees (nonlinearBeamColumn - 1 element)
——OpenSees (nonlinearBeamColumn - 3 elements)
250

200 —

150 /
100 /
i} /

Force [kips]

-1,00 0,00 1,00 2,00 3,00 4,00 5,00

Displacement [in]

Fig. 7.27 Example 23 to 26
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7.2.4 Example 27
Fig

Nodal displacement (node 3 - X dir) - Reaction (node 1 Nodal displacement (node 3 - Y dir)
- X dir) = MercuryMatlab -——OpenSees
== MercuryMatlab -——-OpenSees 0,0012
60 I“
t — 0,0012
40 \
20 N g ooont
s g
g o g
4 k]
K] o 0,0011
N :
20 V
0,0010 1
-40
-60 0,0010
-15,00 -10,00 -5,00 0,00 5,00 10,00 15,00 0 200 400 600 800 1000 1200
Displacement Step

1400

Nodal displacement (node 3 - Z dir) - Reaction (node 1
-Z dir)

——MercuryMatlab ——OpenSees

25000

20000

15000

10000

5000

Reaction
o

-5000 "
-10000 \\
N

-15000 N

200 —

-25000
-0,08 -0,06 -0,04 -0,02 0,00 0,02 0,04 0,06 0,08

Rotation

Fig. 7.28 Example 27, x, y, z direction

7.2.5 Example 28
Fig

7.2.6 Example 29
Fig

7.2.7 Example 30
Fig [3T]
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Reaction

80

60

40

20

Nodal displacement (node 3 - X dir) - Reaction (node 1
- X dir)

= MercuryMatlab ———OpenSees

2000 -1500 -1000  -500 0,00 500 1000 1500

Displacement

20,00

Nodal displacement (node 3 - Y dir)

Mercuryatah

Opensecs

oone

oom2

E ooms

o006

oom4

ooz

oom0

1000 1200

80

Zdir)

=== MercuryMatlab —— OpenSees

Nodal displacement (node 3 - Zdir) - Reaction (node 1 -

60

40

20

Reaction
o

-20,00 -15,00 -10,00

-5,00

0,00 5,00

Displacement

10,00

15,00

20,00

Fig. 7.29 Example 28, x, y, z direction
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Nodal displacement (node 3 - X dir) - Reaction (node 1 Nodal displacement (node 3 - Y dir)
- X dir) == MercuryMatlab —— OpenSees
=== MercuryMatlab ———OpenSees 0,0080
60
0,0070 Jnv
40 : \Q 0,0060
e J
20 = 0,0050
N £ f\l
c
S £ 0,000
T o0 S
4 K J
« & 00030
[}
20 V
0,0020 ___,""
-40 0,0010 v
-60 0,0000
-15,00 -10,00 -5,00 0,00 5,00 10,00 15,00 0 500 1000 1500 2000 2500
Displacement Step
Nodal displacement (node 3 - Z dir) - Reaction (node 1
-Z dir)
——MercuryMatlab ——OpenSees
40000
30000
20000 N
\‘\
§ 10000 \\
g \\
©
& 0
N N
-10000 \
-20000
-30000
0,15 0,10 0,05 0,00 0,05 0,10
Rotation

Fig. 7.30 Example 29, x direction

Fig. 7.31 Example 30
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7.2.8 Ex110 to 113

Fig [[32] Setup for example 110 to 113. Fig [[.33] Acceleration, Velocity and Displacement

for Example 112 and 113. Fig [L.34] Acceleration, Velocity and Displacement for Example 110
and 111.

P . .
+ 3@— Section A-A Section B-B
B B 10in 10in
2 1200in| ! |
D @05
20@1.01in 0@0.5i
1 2@ b[h ] E | A7
Element! i) | (i) | (kins/in®) | (ips/ir?)
1 | 10| 20| 29000 | 292.92
Al A
| ]
i loooin 2 | 10| 10| 28000 | 292.924
y
P Number of fy
AL (kips/in®) | Gauss-Lobatto Points| (kips/irf)
y ] 1 |0.0002836 5 36
_Y — —>X
2 | 0.0002836 4 36
Earthquake
(kips) | (kips)
120 | 10

Fig. 7.32 Example 110 to 113 setup

7.2.9 Ex116 to 119

Fig [[35] Setup for example 116 to 119. Fig [[.36] Acceleration, Velocity and Displacement

for Example 116 and 117. Fig [[.37 Acceleration, Velocity and Displacement for Example 118
and 119.
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Accderation(in/sec?)

Acceleration of x-dir at Node 3
(Linear elastic framewith gener al section)

===Mercury SENN =--Mercury FENNM ——OpenSees NI

3000
1500 .

N
-1500 .
-3000 :

0 5 10 15 20 25 30 35
Time(sec)

40

Velocity of x-dir at Node 3
(Linear elastic framewith general section)

’g e Mercury SE NM - = = = Mercury FE NM OpenSees NM
= 500
> 250
5
S .
-250
-500
0 5 10 15 20 25 30 35 40
Time(sec)
Displacement of x-dir at Node 3
(Linear elastic framewith general section)
o ——— Mercury SE NM = = = Mercury FE NM OpenSees NM
£ 150
E 100
% 50 | P, A
a -50 [ — A4
-100
0 5 10 15 20 25 30 35 40
Time(sec)

Fig. 7.33 Example 110 & 111 acceleration, velocity and displacement
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Acceleration of x-dir at Node 3
(Linear elastic framewith gener al section)

& e Mercury SE HHT = = = Mercury FE HHT OpenSees HHT
3 3000
E -
T 1500
S
T 0
cT) L
< -1500
8 L
< -3000
0 5 10 15 20 25 30 35 40
Time(sec)
Velocity of x-dir at Node 3
(Linear elastic framewith general section)
g Mercury SE HHT = = = Mercury FE HHT OpenSees HHT
= 500
> 250
g "
S \
-250
-500
0 5 10 15 20 25 30 35 40
Time(sec)
Displacement of x-dir at Node 3
(Linear elastic framewith general section)
o ——— Mercury SE HHT = = = Mercury FE HHT OpenSees HHT
£ 150
E 100
% 50 [ A
o 0 %
8- -50 [
(o) L
-100
0 5 10 15 20 25 30 35 40

Time(sec)

Fig. 7.34 Example 112 & 113 acceleration, velocity and displacement
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+ 3 o—P> Section A-A Section B-B

B B 101in 10in
200in| | '
P “0@05
20@1.01in 0@0.5i
1 2@ b [h ] E | A7
Element! ioy | (i) | (kins/in®) | (kins/ir?)
1 |10| 20| 29000 | 292.929
Al A
200 in' ' 2 | 10| 10| 28000 | 292.924
y
P Number of fy
AL (kips/in®) | Gauss-Lobatto Points| (kips/irf)
V] 1 |0.0002836 5 36
_Y — —>X
2 10.0002836 4 36
Earthquake
(kips) | (kips)
120 | 10

Fig. 7.35 Example 116 to 119 setup

180




Acceleration of x-dir at Node 3
(Nonlinear frame with fiber section)

& e Mercury SE NM - = = = Mercury FE NM OpenSees NM
S 3000
= :
T 1500
S s
T 0
GL) 3
© -1500
8 L
< -3000
0 10 15 20 25 30 35 40
Time(sec)
Velocity of x-dir at Node 3
(Nonlinear frame with fiber section)
’g e Mercury SE NM - = = = Mercury FE NM OpenSees NM
= 500
> 250
g "
S )
-250
-500
0 10 15 20 25 30 35 40
Time(sec)
Displacement of x-dir at Node 3
(Nonlinear frame with fiber section)
o ——— Mercury SE NM = = = Mercury FE NM OpenSees NM
£ 100
E 3
% 50
i o PANAN
5 o \h&m,arq,ur/
D 3
-100
0 10 15 20 25 30 35 40
Time(sec)

Fig. 7.36 Example 116 & 117 acceleration, velocity and displacement
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Acceleration of x-dir at Node 3
(Nonlinear frame with fiber section)

& e Mercury SE HHT = = = Mercury FE HHT OpenSees HHT
3 3000
E -
T 1500
=l
= 0
cT) L
T -1500
8 L
< -3000
0 5 10 15 20 25 30 35 40
Time(sec)
Velocity of x-dir at Node 3
(Nonlinear frame with fiber section)
g e Mercury SE NM - = = = Mercury FE NM OpenSees NM
= 500
> 250
g ]
g [
-250
-500
0 10 15 20 25 30 35 40
Time(sec)
Displacement of x-dir at Node 3
(Nonlinear frame with fiber section)
£ ———Mercury SE HHT = = = Mercury FE HHT OpenSees HHT
£ 100
e L
& 50
. f \U,N%A
m 3
B =0 kl‘ " v Av\:qj
D 3
-100
0 10 15 20 25 30 35 40
Time(sec)

Fig. 7.37 Example 118 & 119 acceleration, velocity and displacement
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7.2.10 Example 140

Fig [[38] Setup for example 140. Fig [[.39] Acceleration, Velocity and Displacement.

= 3 n—P> Section A-A

Section B-B
B B 10in 10in
21 20000in | '
o Co@0st
20@1.0in 0@0.51
T 2/ b ]h E
V K
Element) i | i) | (kipsi) (kips/irf)
1 | 10| 20| 29000 | 0.2 | 5.0e5
il
i | 20000 2 | 10| 10| 28000 0.2 | 5.0e5
y
p
Element (kips/in) np| A a Dc
Vo 1 |0.0002836 5 |5.0e+3|2.93¢-4 0.9999
Yy g —»X
2 10.0002836| 4 |5.0e+3|2.93e-4 0.9999
Earthquake

Fig. 7.38 Example 140 setup

7.2.11 Example 141

Fig [[.40] Setup for example 141. Fig [[4T] Acceleration, Velocity and Displacement.

7.3 Comparison of Modified Kent & Park with the Anisotropic

Model

Two concrete models were implemented in Mercury, the well established Modified Kent &
Park model, and the more recently developed anisotropic damage model of

183




Acceleration of x-dir at Node 3
(Anisotropic concr etedamage model with fiber section)

f’vg —Mercury NM
= 3000000
'\E/ 2000000
© 1000000
© 0 AV
9 .1000000
S -2000000
< -3000000
0 5 10 15 20 25 30 35 40
Time(sec)
Velocity of x-dir at Node 3
(Anisotropic concr etedamage model with fiber section)
’g‘ —Mercury NM
€ 300000
X 200000 }
= N 1
% 1000000 T "" !,!
2 100000 - ‘VN / ¥ d b
-200000
-300000
0 5 10 15 20 25 30 35 40
Time(sec)
Displacement of x-dir at Node 3
(Anisotropic concr etedamage model with fiber section)
= —— Mercury NM
= 80000
é 60000 o
g 59000 A U CIA ™\
© 0 f1 \ 3 VA= VAN N\ ™
5 0000 NIV 1117 TPV s N I A N4 i ¥l
O -40000 ‘3\ ” Wi
-60000 v
-80000
0 5 10 15 20 25 30 35 40
Time(sec)

Fig. 7.39 Example 140 acceleration, velocity and displacement
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20000 in

20000 in

n—P> Section A-A

v

[
<

Section B-B
B 10in 10in
| ]
T . Y0@05 N
20@1.0in 0@0.51
» b E
V K
Element) ) (kips/ir?) (kips/irf)
1 |10 29000 | 0.2 | 5.0e5
A
: ' 2 |10 28000 | 0.2 | 5.0e55
y
p
Element (kips/fin) nip Dc
1 1 |0.0002836| 5 |5.0e+3|2.93e-4 0.9999
—»x
2 10.0002836 4 |5.0e+3|2.93e-4 0.9999
Earthquake

Fig. 7.40 Example 141 setup
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Acceleration of x-dir at Node 3
(Anisotropic concr etedamage model with fiber section)

f’vg —Mercury NM
= 3000000
'\E/ 2000000
© 1000000
© 0 AV
9 .1000000
S -2000000
< -3000000
0 5 10 15 20 25 30 35 40
Time(sec)
Velocity of x-dir at Node 3
(Anisotropic concr etedamage model with fiber section)
’g‘ —— Mercury NM
= 300000
'\;/ 200000 }
.*é' 1000000 | ‘U l ‘l } A
2 mad, ﬁhrbg&%w,ﬁ%wﬁw&—
> -100000 V v
-200000
-300000
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Time(sec)
Displacement of x-dir at Node 3
(Anisotropic concr etedamage model with fiber section)
= —— Mercury NM
£ 80000
é 60000 o
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O -40000 ‘3\ ” Wi
-60000 v
-80000
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Time(sec)

Fig. 7.41 Example 141 acceleration, velocity and displacement

186




7.3.1 Description of Test Problems

Two representative beam-columns were identified:

Beam-Column 1: is a single flexibility based beam-column element with confined and uncon-
fined concrete and internally composed of 30 concrete fibers, and 8 steel ones, Fig. [[.42]

2
—/ - & N
o
6in AL 4R
A A % [ ]
4 4
f 0.85in
AL LA 430in
@ 27in
 0.85in 0.85in
4.30in __L
0.85in 4.30in 0.85in
I e
0.85in | ein | At 44
X e
1 _L Oiny e
- 0.85in 4.30in 0.85in
Beam-Column 1 Beam-Column 2

Fig. 7.42 Test Beam Columns

Beam-Column 2: has the same cross section (68 concrete fibers and 8 steel fibers) as the
previous column, however it is composed of 3 flexibility based elements, and one zero
length element and one zero length section element at each end, Fig. [(.42]

Material properties are shown in Table [Z.1l
We consider three type of loads:

Loading 1: Simple pre-peak push-over Where the imposed displacement do not induce
failure. A total of 1 inch displacement is imposed by increments of 0.01 in. Fig. [[43]

Loading 2: Pushover with vertical compression Second loading is a pushover (in dis-
placement control as well) of 2.57 inches with a vertical loading of 16.7 kips and steps of
0.0097 inches.

Loading 3: Cyclic load Third loading is cyclic load,three cycle are done for each the peak :
0.1 inch., 0.21 inch., 0.43 inch., 0.86 inch., 1.29 inch., 1.72 inch., and 2.57 inch.. Vertical
compression is also 16.7 kips.

7.3.2 Results

Modified Kent & Park and anisotropic damage models yield practically same results for
Column-1 Loadl and 2, and column-2 Load-2, Fig. ?? and [.45]

Fig. compares Modified Kent & Park (from an OpenSees analysis) anisotropic damage
model in Mercury for Load-3 and Column-2. We note that both analysis yield practically same
results.

The CPU times reported in Table indicate that:
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Table 7.1 Material Properties

Anistropic Damage

FE v Ko a A D.
Concrete Core 3960 0.18 | 4.95E-05 | 3.36E-04 4,200 0.999
Concrete Cover 3823 0.18 | 4.65E-05 | 3.47E-04 4,150 0.999
Bar slip Concrete Core 3960 0.18 | 4.85E-05 | 3.47E-04 4,150 0.999
Bar slip Concrete Cover | 3823 | 0.18 | 5.00E-05 | 3.17E-04 4,500 0.999

Modified Kent-Park

Ey p 0co €co Ocu Ecu A ot
Concrete Core 764.7 0 -4.815 -0.002675 | -4.3335 | -0.008025 0.3 0.50311
Concrete Cover 764.7 0 -4.5 -0.0025 -1.5 -0.0075 0.3 0.50311
Bar slip Concrete Core 156.16 0 -4.815 -0.01309 | -4.3335 -0.0393 0.3 0.50311
Bar slip Concrete Cover | 156.16 0 -4.5 -0.0122 -1.5 -0.03672 0.3 0.50311

Modified Giuffre Menegotto and Pinto

E p OYo b Ry n CR1 CR2 a1 | a2 | a3 | as | Cinit
Steel 29000 0 64.5 0.01 15 0 0.925 0.15 0 | 55| 0 | 55 0
Bar slip Steel 5922 0 64.5 0.01 15 0 0.925 0.15 0 |55 | 0 | 55 0

Zero Length Section

E p G
Shear Stiffness 10° 0 0
Axial Stiffness 107 0 0
Rotational Stiffness 1107 0 0
ShearRigid Tag 108 0 0
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Fig. 7.45 Force Displacement for Column 2, Load Pattern 2
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Fig. 7.46 Modified Kent & Park (OpenSees) vs Anisotropic Damage (Mercury), Tol. 1078
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1. For Column-1 Modified Kent & Park appear to be faster than anisotropic damage model
for pushover analysis.

2. For Column-1 Modified Kent & Park appear to be 777 than anisotropic damage model
for cyclic load.

3. Anisotropic damage model is much faster than the Modified Kent & Park for Column-2
Load-2 (which is a pushover up to failure).

Column 1 Column 2
Load 1 | Load 2 | Load 2 | Load 3
Anisotropic Damage 133.1 636.5 1,601 | 10,8574
Modified Kent & Park | 24.8 60.5 11,562 *
* No convergence after 20,000 iterations at incr. 399

Table 7.2 Comparison of CPU time for various loads for a convergence criteria of 10~8

In Table we determine that for Column 2, Load-2, we determine that increasing the
convergence tolerance up to 107°, the anisotropic damage model is faster than the modified
Kent & Park; however the reverse is true for convergence tolerance up to 1075.

Tolerance | 10° | 107° [10°* 1077
Total CPU Time

Modified Kent & Park | 11,500 | 15,000 | 118 | 101

Anisotropic Damage 1,600 714 536 | 427

Inverse of Normalized CPU Time wrt Damage (1079)

Modified Kent & Park 0.1 0.1 13.6 | 15.8

Anisotropic Damage 1.0 2.2 3.0 3.7

Table 7.3 Comparison of CPU time between Modified Kent & Park and Anisotropic Damage
for different convergence criteria for Column 2 and Load 2

However, for both models we can increase the convergence criteria up to 10™2 without
significant loss of accuracy, Fig. [[.47]

7.3.3 Effect of Fixed Number of Iterations

The RTHS integration schem at CU-NEES fixes the number of iterations per increment
to 10. As such, we examined the errors induced by fixing the number of iterations in the
Anisotropic Damage model on Column-2 Load-3, Fig. [[.48 We note that by dropping the
maximum number of iterations from 100 to 10, there is practically little differences in the
results.

Fig. shows that for Column-2 Load-3 with a tolerance of 1073 there are few increments
with more than 10 iterations.

Comparing CPU times for Column-2 and Load-3 with the anisotropic damage model, we
increased the speed by a factor of 300 from a tolerance of 10~ and maximum iterations equal
100, to a tolerance of 1073 and maximum iterations equal 10, Table [Tl

The effect of tolerance and number of iterations on the accuracy of results in the anisotropic
model for column 2 load 3 are shown in Fig. ??7. We observe that we can reasonably use a
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Modified Kent & Park
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Anisotropic Damage .
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Fig. 7.47 Force Displacement for Column 2, Load 2, Anisotropic Damage and Modified Kent
& Park Model. Tolerance form 1E-8 to 1E-3
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Fig. 7.48 Effect of fixed iteration number in the anisotropic damage model
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Fig. 7.49 Number of iterations per increment in anisotropic damage model with 1073

Tolerance e=10""% e=10"3

Max. Iteration 100 100 20 10
1.08E+05 | 7.20E4-03 | 4.07TE+02 | 3.50E402
Speed-up 1.0 15 265 309

Table 7.4 CPU Comparison for anisotropic damage model with various convergence criteria
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Colmun 2 Load 3 Ansitropic Damage Model

——100 iteration toleance = 1E-8

——10 Iteration tolerance = 1£-3

Force [kip]

Displacement [in.]

Fig. 7.50 Effect of fixed iteration number in the anisotropic damage model

tolerance of 1073 and a fixed maximum number of iterations equal to 10 in the anisotropic
damage model for Column-2 and Load-3 which is representative of seismic load.
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Chapter 8

HYBRID TEST

8.1 Introduction

8.1.1 Methods To Evaluate Seismic Performance

The numerical and experimental methods for evaluating the seismic performance of a va-
riety of structures have been developed during the past decades. Nevertheless, it is too hard
to predict confidently the structural response under severe seismic loadings when a structure
has inelastic behavior and includes elements with the rate dependent behavior. Actually, the
accuracy of the predictions of structural response in the existed nonlinear analytical methods
are limited by assumptions in the mathematical models. Therefore, experimental methods have
been regarded as methods that are worth trusting most to evaluate the nonlinear behavior of
structures subjected to severe earthquake loadings. Such experimental methods can provide
the effective, professional information for understanding and evaluating nonlinear behavior of
structures as well as for the new structural designs to improve seismic performance.

To simulate the dynamic response and evaluate the seismic performance of structures and
their components, all numerical methods can fall generally within either explicit or implicit
methods, and experimental methods can be subdivided into three main methods: quasi-static
tests, shaking table tests, and hybrid tests.

8.1.2 Numerical Methods

The idealized structural model is described by the equations of motion in spatially dis-
crete form by a set of second-order ordinary differential equations, which is approximate rep-
resentation of the real structure. The equations of motion can be solved using numerical
step-by-step integration methods.

Mii + Ci 4 rg = f (8.1)

where, M and C are the mass and viscous damping matrix, and f is the external excitation
vector;u, u, and rg, are the acceleration vector, the velocity vector, and the static restoring
force vector of the structure.
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Both explicit and implicit methods have been applied for simulating the dynamic response
of a structural model. If the displacement at each time is determined entirely in terms of the
solutions at the previous time step without the need to invert the stiffness of structure, the nu-
merical integration methods are said to be explicit methods. The advantage of explicit methods
is that the required displacement increments can be determined directly from the results of the
previous time-step, while the drawback of these is that they are conditionally stable with respect
to the time interval for integration, so may require a short-time step for integration and require
that systematic error be controlled within given parameters in order to remain stable. Explicit
methods may not be used for multi-degree-of-freedom structures due to systematic undershoot
errors exciting higher mode responses. Otherwise, implicit methods require knowledge of the
structural response in the current time step. For structural response with nonlinear behavior,
these require a Newton-type iterative procedure in order to satisfy equilibrium at the end of the
current time step. However, most implicit methods are unconditionally stable and can better
handle structural nonlinearity and experimental error. Hence, implicit methods allow for the
possibility of analyzing a multi-degree-of- freedom structure with high frequency modes using
a reasonably large time step. However, an iterative solution procedure for a nonlinear system
may require a lot of computational time, which may have the possibility of inducing undesiable
loading and unloading hystereses in a structure.

In summary, while explicit methods make it easier to implement in hybrid simulation,
implicit methods can improve stability characteristics and use larger integration time steps.
Therefore, the use of implicit methods can get better accuracy than the use of explicit methods.
However, implicit methods may be undesirable for test of structure because of the risk of
overshooting, which may have a significant effect on the response of the structure (Williams
and Blakeborough 2001).

8.1.3 Experimental Methods

The most widely used experimental methods to obtain the structural response under seismic
loadings are quasi-static test, shaking table test, and hybrid test. Shaking table tests, hybrid
tests, and real-time hybrid tests similar to hybrid tests are introduced.

8.2 Literature Survey

8.2.1 Deveolpment Of Hybrid Test

8.2.2 Time Integration Methods For Hybrid Test

Early hybrid tests have required the test of the entire structural model and a large-scale
testing facilities. For this reason, substructure technique has been developed and applied to
hybrid tests by Dermitzakis and Mahin (1985), Nakashima and Takai (1985), and Shing and
Vanna (1991). This is explaned in section BZ2T]

To represent the dynamic behavior of structure for hybrid test, we can use a set of spatially
discretized equations of motion depicted by matrix form. In step-by-step time integration with
discrete time interval At, the equations of motion at current time step t, can be written:

Mi, + Cu, +rg, =1, (8.2)
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where, M and C are the mass and viscous damping matrix, and f,, is the external excitation
vector at the current time step t,; U,, u,, and rg,, are the acceleration vector, the velocity
vector, and the static restoring force vector of the structure at the current time step t,. Eq.
at each time step can be solved by approximate solutions within each time interval. Time
integration methods generally can be classified into two catagories: either explicit or implict
methods. They are introduced in section and section

8.2.2.1 Substructure technique

In substructure technique, a structure is partitioned into analytical and physical substruc-
tures. Physical substructure in which structural nonlinearity or severe damage due to seismic
loading is expected will be actually tested in laboratory, and anlytical substructure is the
remainder of the structure to be modelled in a computer. The equilibrium and displacement
compatiblity conditions between the analytical and physical substructures can be enforced with
a standard substructure technique. Hence, we can rewrite the equaions of motion for the entire
structure with both analytical and physical substructures:

MA+MP)ia+ (CA+Clyia+rg +of = (8.3)

where, the terms with subscripts A represent the properties and response variables of the
analytical substructure and the terms with subscripts P are those of the physical substructure.
Since the quantities of the inertia and damping forces of physical substructure are measured in
test, Eq. can be expressed approximately:

M4 4 Cli+rd +rf = f (8.4)
with
= rf + rg + rg
MPi + CPi+ vk (8.5)

Depending on the properties of the analytical and physical substructures and how the two
are coupled in the analysis, either explict or implicit methods can be used to solve Eq.
numberically. Fig. RIlexplains the total approach (Shing 2008). In this approach, it is assumed
that the dynamics of the entire system can be accurately described by the degrees of freedom
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(a) Whole Frame

(b) Analytical Substructure

(c) PbgkBubstructure

Fig. 8.1 Partitioning of a structure into analytical and physical substructures with a total
approach (Shing, 2008)

indentified in Eq. B4l Eq. B4l based on the total approach can be expressed as follows:

M& 0 0 0 iy
0 M3 0 0 iio
0 0 M o0 i3
o o o0 Mp iy

cA+cyt 04 0

-cyt o+t -4
0 -cg i+ o
0 0 —of

0 e bil

T§2 n rd _ ) fe

3 0 I3

T§4 0 fa

In this approach, the restoring force vector can be rewritten:

I'P I'P

rp = rj% + rg
A A

s s

0
0

oy

where, subscript B denotes the degrees of freedom at the boundary of the analytical and physical
substructures. Hence, the restoring force vector (rg) developed by the physical substructure
is measured in the test and assembled with the restoring force vector (r4) from the analytical
substructure to obtain the system restoring force vector.
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8.2.2.2 Explicit methods
1. Central difference method

The central diffenence method is one of the most widely used explicit methods because of
its simplicity and computational efficiency. In this method, the velocity and acceleration
vectors at the current time ¢, are approximated by Eq. and Eq. B7 respectively:

. Up+1 — Up—1
u, SAL (8.6)
. Up41 — 2un + U,
u, N (8.7)

Substituting Eq. and Eq. B into Eq. B4], we have Eq. B8

u+1—2u +up—1 Up+1 — Up—1
M [ A } +ct [7" N ] tri, b = f
KU = Foep  (8.8)

where,

At
Kepp = [MA + 70’4]
2 A P A A At 4
Foerr = |At (fn—rsm—rn) +2M*“u,, — (M —7C u,_1

where, K s is the effective stiffness matrix and F,, .r; is the effective external force
vector; r¥ is measured from the physical substructure in each time step. Hence, we can
solve for uy,11:

Upy1 = [Keff]_l Fn,eff

The effective stiffness K.y, only have mass and damping matrix with discrete time interval
At. For this reason, the structural stiffness matrix doesn’t need to be inverted.

This method is a two-step method because the displacement response at ¢,,41 is expressed
in terms of the solution at the previous time steps t,_1 and ¢,,. To determine the dis-
placement vector u; in the first time step ¢;, we need a fictitious displacement quantitiy
u_; that can be obtained from Eq. and Eq. B7l Hence, we have:

At?
u_j; = ug — Atug + TUO

where, the initial acceleration vector iy can be solved with the initial conditions ug and
ug.
iip = [MA] ™! (f, — C*g — 15, — 1)

The central difference method is conditionally stable. Thus, a stable solution can be
obtatined only by selecting a time step At < At., (Tedesco, McDougal and Ross 1999)
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Fig. 8.2 Flow chart of central difference method for hybrid test
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given by
T,

Ater = —

0

where, T}, is the smallest natural period corresponding to highest natural frequency w.
Fig. explains the implementation of the central difference method for hybrid test.
. Newmark [ explicit method

Mahin and Williams (1981) proposed the application of Newmark [ explicit method for
hybrid test. This mehtod consists of the following equations in each time step:

for1 = MUY+ CMaypr +18,, +1) (8.9)
. At? 3} .

U,y1 = u,+ Atu, + - [(1—20)1, + 2610,41] (8.10)

U1 = W+ At[(1— )ity + i) (8.11)

where, 3 and ~ as integration parameters determine the stability and accuracy character-
istic of the algorithm under consideration. If 8 = 0, this method is explicit method, and

Eq. BI0 becomes:
2

. At* .
Up+1 = Uy + Atun + Tun (812)

Substituting Eq. BI2] and Eq. BI1] into Eq. B9, we can solve for i, 1.

MAﬁ-n-i-l +c4 {u, + At[(1 — )i, + ylpa]} + rgl,n—i—l + rf—i—l = fun
Keffﬁn+1 - Fn+1’eff(8.13)
where,
Keff = MA + At’yCA
Foiterf = fhy1— c4 [a, + At(1 —~y)u,] — r?,n-i—l - r71;+1
Hence,

1uln—l—l = [Keff]_an—i-l,eff

Fig. explains the implementation of the Newmark (3 explicit method for hybrid test.

If 5 =0 and v = 1/2, this method has the same stability and numerical properties as the
central difference method, but has a more favorable error-propagation characteristic for
displacement feedback errors in an experiment (Shing and Mahin 1983).

. Modified Newmark method

Shing and Mahin (1983) developed the modified Newmark method that provides a fa-
vorable numerical energy dissipation effect which is not available in the central difference
method or Newmark 3 explicit method. This numerical energy dissipation damps out the
spurious higher-mode reponse introduced by experimental errors. This method consists
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of the following equations:

MAﬁn+1+(1+a)(r§,n+1+r5+1)+§MAUn+1 = n+1+a(r§,n+r5)+§MAun (8.14)

AP
Upt1 = u, + Ata, + — Un (8.15)
. ) At . .
Upt1 = Up + T(Hn + un—l—l) (816)

Rewritting Eq. B14] we can solve for i, 1:

M&i, 1 = o — (1 +a)(xg 4 +10) alrs, +r)) + ALtzMA(un — 1)
. _ p
1 = MY [f — (1 4+ )(r5, 10 + i) +alrd, +11)] + Az (U~ tni1)

As shown in Eq. B4l with a careful selection of parameters o and p, damping is to
be determined numerically in the algorithm instead of Damping matrix C4. Hence, this
method can provide small damping for lower frequency modes and larger damping for
the higher frequency modes. This is because this method provides numerical damping
that increases with frequency. This method is recommanded for a structure with the
multi-degree-of freedom, where experimental error propagation can be significant in the
high frequency modes.

Shing and Mahin (1984) showed the stability limits as the following equation:

P < I1+/1—=(1+a)p

1+«

N

where, w is the hightest natural frequency.

Fig. B4 explains the implementation of the Newmark (3 explicit method for hybrid test.

8.2.2.3 Implicit Methods

Since the explicit methods are conditionally stable, these can be limited in structures with
mulit-degree-of freedom or very higher frequency mode. Hence, the implicit methods with
unconditional stability can be useful method.

1. Newmark g implicit method

The Newmark 3 implicit method can be expressed with Eq. B9 Eq. BI0, and Eq. BIT]
Rewritting Eq. B.I0 and Eq. BI1}

Un+1 = ﬁn-i—l + At2ﬁlnln+1 (817)

1:1.n+1 = an+1 + At’}/un+1 (818)
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Fig. 8.4 Flow chart of the modified Newmark § explicit method for hybrid test

203



where,

N . AR .
Up11 = u, + Ata, + T(l —2P)u,

U1 = U, + Al —9)i,
Rewritting Eq. BRI, we can solve for ti,,41:

Up41 — ﬁn—l—l

u = 8.19
n+1 Atzﬂ ( )

Substituting Eq. B.19 into Eq. B.I8], we can rewrite ,11:
ﬁn—i—l = ﬁn+1 + L(un-i-l — ﬁ.n+1) (820)

ALS

Substituting Eq. B19 and Eq. B20 into Eq. B9l we have:

Uyl — Upgi < -
1Y & [HT%H] +cA |:un+1 + Aiw(un—l—l —Upq1)| + ré,n-l—l + 1"5+1 =1Inp1

1 A Y ~A A P
At2BM Upt1 + —Atﬂc Upt1 +Tg41 + Tngg
1 N ol - .
= f — M4 L c4 — CA¢ 8.21
n+1 t AZS Up41 + AtF Upt1 Upt1 (8.21)

If the trial solutions in given iteration step k are uﬁ 1 rg’: 410 and rffl, it does not satisfy
the equations of motion. Hence, we can write for this particular step with residual force
vector RE |

Rfl-i—l =In+1 + M (ﬁ.n+1 — u]fH_l) — CAﬁn+1 — rg”:_l_l — rffl (822)
where,
— M4+ AtyCA
M = %
Ate

In this method, we need to estimate M?, CP, and the stiffness matrix of physical sub-
structure K exactly. However, since measuring K¥ during hybrid test is so complicated
work and it is only used to estimate the updated displacements in the iteration process,
the initial stiffness matrix Kg of physical substructure is used even though this may affect
the convergence rate. For structures with softening behavior under seismic loading, K¢
may be a little higher than the tangent or secant stiffness matrix to prevent the over-
shoot and undesiable loading and unloading cycles and to preserve the stability of the
numberical solution (Shing 2008).

204



Assuming that the physical substructure has viscous damping and using the modified
Newton Raphson iteration with the initial stiffness of the structure, we can solve for
k.
Aun—i—l‘ . .
Rn+1 = KeffAun+1 (8'23)

where, K., is the effective stiffness matrix, and Au% ; is:

k _ k
Aun+1 = Up+1 — Uppq

To compute the effective stiffness matrix, we can express rl,; as the following equation

from Eq.

I'5_|_1 = Mpﬁn-l-l + Cpun+1 + r§n+1 (824)

Also, we can rewrite rg’n 41 and rﬁ e

i = Kiung (8.25)

vl = Mg+ CPang + K upi (8.26)
Substituting Eq. B.25] and Eq. B.26 into Eq. B.21], we can solve for u,1:

(M4 + MP) + Aty(CA + CP)

NG 41— (C 4 CH)lpgg

Keffun+1 =Iny +

where,
(MA + MP) + Aty(CA + CP)

A5 + (K + KPD) (8.27)

Kerr =

From Eq. B23, we can solve for Au,; and the updated displacement vector uﬁﬁ at the
next iteration step k + 1:

k —-1nk
Aun—l—l = [Keff] Rn—l—l
k k k
utl = uf, +AdE (8.28)
k+1

The updated displacement vector u, 7 to be imposed on the test structure would be sent
to the actuator controller for the current iteration. However, the measured displacement

vector u;rﬂ’rklJrl may not be the same as the updated displacement vector uﬁﬁ kdue to
m,k+1

the limitation of a loading equipment. The measured displacement vector u,; " for
computing the next iteration will be used as the new updated displacement vector.

k _omyk+1
un+1 - un+1

This method needs iterations using modified Newton-Raphson method as shown in Fig.
until u’fL 1 converges to the exact solution. For this reason, this may results in following
problems for real-time hybrid test: (a) u®_; cannot be directly imposed on the structural
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Fig. 8.5 Modified Newton-Raphson iteration in hybrid test

specimen because this may lead to undesired velocity fluctuations during iteration, and
(b) this may lead to uncertainties in actuator speed such as the slowing of actuator speed
because the number of iteration for correction of displacement vector can vary from one
time step to the next time step depending on the degree of nonlinearity developed by the
structure, and correction of displacement vector follows a 2"%-order convergence.

To avoid these problems, a special iterative method that has a fixed number of iterations
in each time step has been proposed, and relies on quadratic interpolation function to
assure a smooth motion of the actuators during iteration (Jung 2005). The quadratic in-
terpolation function is based on the updated displacement vector ufljj and the converged
displacement vector in the previous time steps. In this procedure, the number of the ac-
tuator movement within a time step is limited with ¢ iteration steps. Fig. illustrates
the procedure in detail. Instead of the updated displacement vector uﬁﬁ, the desired
diplacement vector ui’ffl at current iteration step which is sent to actuator controller

can be expressed by the following equation:

w01 02 c3]{ u¥ (8.29)
k+1

un+1

where, k vary from 0 to ¢ — 1, ¢ denotes the total number of specified iteration in each
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Fig. 8.6 Iteration scheme using quadratic interpolation

time step, and

Ccl =

() - ()
()
() ()

i becomes At/dt, where dt means the time interval of the actuator controller in a time
step. In the first time step, the quadratic interpolation is based on the initial displacement
and velocity vectors.

C3 =

1
2

k+1)
ucll’kH:CZ'uo—Z-i'Cl-ilo—F<L_> u]fH
i

In this procedure, experience indicates that 10 iterations in a time step will provide
satisfactory convergence even for strongly nonlinear structural responses provided that
there is no severe strain softening (Wei 2005).

Since the number of iterations in each time step is fixed, convergence errors are expected by
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Fig. 8.7 Flow chart (1) of the Newmark  implicit method for hybrid test
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the time delays in actuator response and in the data exchange between the controller /data
acquisition processor and the target computer. To minimize the effect of these errors and
enforce equilibrium at the end of each time step, the following approximate correction can
be introduced for the updated displacement vector and force vector in the last iteration
(Shing 2008).

— d72‘
Up+1 = Upyy
A A1 A i1
FSm+1 = rS n+1 + K [ n+1 un-l—l] (830)
P _ Pm,i—1 Px myi—1
Inpr = Iy +K [ wty —u ] (8.31)

. Pm,i—1
where, u,, 41, r?n 41, and rP 1 are the updated displacement vector, force vectors, rnﬁ’l

is restoring force vector measured from the test structure at the beginning of the last
iteration, and K* is the portion of Eq. B2 that contaions only the properties of the
physical substructure.

In addition, to avoid displacement incompatibility between the analytical and physical
substructures at the boundary degrees of freedom, it is desired that the displacements
and forces measured from the physical substructure be corrected in each iteration as
follows (Wei 2005):

k+1 . dk+1
un—l—l - un—l—l
Pkl _ Pmk+l P [ dk+1 mk+1
o1 = Tppa + K w0 —u ]

Fig. B1 and Fig. explain the implementation of the Newmark [ implicit method for
hybrid test.

. HHT implicit method

HHT implicit method basically has the sams procedure as Newmark [ implicit method.
However, this presents a technical difficulty when the inertia force vector developed by
the physical substructure become significant and cannot be ignored (Shing 2008). If
-1/3<a <0, (1-a)?/4, and v = (1 —20a)/2, then this method is unconditionally stable
and has a second-order accuracy. HHT implicit method can be expressed with Eq. BIT],
Eq. BI8 and the following eqauation:

1+ a)f —af, = M, + 1+ oz)cf‘un+1 — acAun
+(1+a)rg, —org, +(L+a)rh  —arl  (8.32)

Substituting Eq. B.19 and Eq. B.20 into Eq. B.32] we have:

u, u, .
(14 o)1 —of, = M* [+1725+1] +(1+a)C? |:un+1 + Atﬁ(un-i-l Uyp1)

—aC4a, + (1+ Oé)ré,nﬂ CYI'Sn (1+a)r), Cpp1 — ary;
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1 Y
MAu, g + -
Alg T M T A

(1+a)Cyp1 + (14 Q) (t5 41 +Ths1)

ﬁ A n+1+Atﬁ(

—(1+@)Cyy 1 + aCl, + (rén +r)) (8.33)

= (1+a)f11 —af, + 1+a)C Uyl

If the trial solutions in given iteration step k are ufl 11 rg’: 41, and rffl, it does not satisfy
the equations of motion. Hence, we can write for this particular step with residual force
vector RE

R, = (I+a)fi1—of,+M <ﬁn+1 - Uﬁ+1> — (1+a)C,41 + aCtu,
~(1+a) (rg‘,§+1+rn+l) +a(rg,+r)) (8.34)
where,

N M4 + Aty(1 4 a)CA
B N

Assuming that the physical substructure has viscous damping and using the modified
Newton Raphson iteration with the initial stiffness of the structure, we can solve for
Aufl-i-l:

Rl 1 = KeppAupy, (8.35)

where, K., is the effective stiffness matrix, and Auf | is:
k _ k
Ay g = Upp1 — Uy

To compute the effective stiffness matrix, we can express r’’ 11 as the following equation:

ri =M, + (1+ a)Cliyy — aClit, + (1 + @)l — arg, (8.36)

Like Newmark 3 implicit method, we can rewrite rém 41 and rﬁ I

rnp1 = Koun (8.37)
P P P. _ P.
(1+a)? r, . —or, ~ M9+ (1+a)C i, —aClu,
+(1+ Oz)KOPun_H - ozrg,n (8.38)

Substituting Eq. B37 and Eq. B38 into Eq. B.33], we can solve for u,,41:
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(MA +MP) + Aty(1 + a)(CH+ CP)]

Keffun+1 = (1 + Oé)fn—i—l —af, + Atzﬁ Up 41
—(1+a)(C*+ CP)ayy1 + a(Ch + CP)uy, + afrd, + 15,
where,
M4 + MP) + Aty(1 + a)(CA + CF
Ky _ | ) (L + )l )+(1+a)(Kg‘+K{f) (8.39)

A3

From Eq. B35, we can solve for Aqu 11 and the updated displacement vector uﬁﬂ at the
next iteration step k + 1:

AuI:H-l = [Keff]_lsz-H

k
wil = up +Au, (8.40)

Fig. and Fig. R0 explain the implementation of the HHT implicit method for hybrid
test.

. Operator-Splitting method

Since Operator-Splitting (OS) method does not require iteration but is unconditiionally
stable method, it is so ambiguous for Operator-Splitting method to be classified as either
explicit or implicit methods. However, the OS method is based on implicit methods
and uses a predictor-corrector approach not to require iterations for nonliner response
of structure. For this reason, we can classify the OS method as implicit method. This
method was developed by Nakashima, Kaminosomo and Ishida (1990) for hybrid test,
and applied by Wu, Xu, Wang and Williams (2005) for real-time hybrid test to test a
damper system where the actual mass of the specimen is negligible. Wu et al. (2005)
assumed the predictor velocity ﬁn+1 is constant in each time step and have concluded
that the unconditional stability of the integration scheme can no longer be preserved by
having the predictor velocity that is not consistent with the OS method. For real-time
hybrid tests with the velocity-dependent physical substructure, the equations of motion
are expressed as follows:

foir = MY+ Clig + K§ (Wagr — Qng) + 74,41 (B011)
+MP i, 41 + CF (1 — Q1) + K (Wog1 — 8p1)
1 (W1, ) (8.41)

where, 1,11 and 0,41 are the predictor velocity and displacement vectors, and 1,41 is
the acceleration vector, and 0,41 and u,4; are the corrected velocity and displacement
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Fig. 8.9 Flow chart (1) of the HHT implicit method for hybrid test
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vectors;

~ AP

U,11 = u,+ Ata, + — Un (8.42)

x ) At

Up+1 = Uy + 711” (843)
N At?

Upt1 = Uptr + Tun-i-l (844)

. x At

Upt+1 = Uptr + 7un+1 (845)

and f'g"n 4+1(8,41) and f‘ﬁ +1(f1n+1, U,+1) are the restoring force vectors of analytical and
physical substructure to be computed and measured with the predictor vectors, respec-
tively. In this method, the predictor displacement vector t,1; is imposed on the test
structure with ﬁn+1, and then the measured restoring force vector ffﬂ is measured and
f'g{n 41 is computed. Substituting Eq. and Eq. into Eq. B4l we have Eq.

Keffﬁn—l—l = Fn—i—l,eff (846)

where,

A MP At CA CP At2 KA KP
Kepp = (M7 4+MY) 4+ —(C7+CY) + — (Kj + Ky
Froitery = fagr — Cllngpr — 8,40 (Wog1) — Ty g (W1, W)

In this method, we can slove for 1,41 without iterations. We needs a correction of the
measured force vector based on the initial stiffness and the error in displacement feedback.
For this reason, the restoring force vector of physical substructure will be corrected as
follows:

P _ -Pm P i
Fny1 = Tnpa + KO (un+1 - un-‘rl)

where, 0}, ; is the displacement vector measured from the test structure.

Fig. BI1l explains the implementation of the Operator-Splitting method for hybrid test.
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Chapter 9

PARALLEL COMPUTATION

9.1 Using Parallel Computation in Finite-Element Analysis

For Finite-Element analysis of structures, there are several opportunities for parallelization;
here we examine the parallelization of two major computation processes in a typical analysis:
the matrix solver and per-element computation.

The matrix solver is a key component in finite-element computation because it is used
every iteration to compute the displacement delta from the residual using the stiffness matrix:
du = K~ 'r. For large systems the matrix solver takes up the bulk of analysis time. Speeding
up the matrix solution time with a parallel matrix solver can produce a dramatic speedup of
the overall analysis time.

Per-element computation can consume a large amount of overall analysis time, particularly
if the computation in each element is non-trivial. Many of the structures considered a CU-
Boulder contain many flexibility-based beam-column elements, which rely on internal iteration
to solve a complex relation involving multiple sections and materials. The computation required
for any single element is small, but when the structure contains several hundred or thousand
elements the total computation is considerable.

Speeding up both the matrix solver and per-element computation can be accomplished with
paralleization. The computation is divided up amongst several processors, each of which work
on part of the problem. The results from each processor are then re-assembled into a final
product for use in further computation.

We will consider two forms of parallelization:

Shared-memory parallelism or multithreading, where there exist multiple processors on a
single computer. This would typically be a high performance desktop computer with
two or more processors, each possibly quad-core, and a total cost under $8k. When the
program starts up, several “threads” or streams of computation are started up and are
used to distribute computation over several processors inside the computer. Multithreaded
programs are often easier to write and test than distributed-memory parallelism, but are
limited by the maximum number of processors that can be embedded within a single
computer.

Distributed-memory parallelism where there are many computers each with their own mem-
ory space which send data to each other using a computer network. Distributed-memory
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parallel programs are usually harder to write and suffer more overhead due to the com-
munication between computers. MPI is the standard programming environment for such
application. However, they are often capable of running much larger problems than an
equivalent multithreaded program. Typically, this would have at least 65 processors, and
the number can be up to thousands. For reference, the University of Colorado is acquiring
a 100+ teraflops peak performance computer (an NSF award to Prof. Tuffo), with half a
petabyte of storage, 12 gigabytes of RAM. It will have a tightly coupled mesh interconnect
via a quaddata-rate InfiniBand and available through a 10 Gbps network on campus.

9.2 Parallel Computation in Real-Time Hybrid Testing

When targetting parallelism for hybrid testing, specifically real-time hybrid testing, the
upper bounds in per-iteration computation time become a dominant factor. For instance, in
the real-time hybrid tests performed at CU-Boulder, each iteraton of the Newton-Raphson
solver must complete in 0.97mS. A message sent using MPI over Infiniband (a high-speed
interconnect used in cluster computing) typically has 1.3uS to 3uS end-to-end latency, or about
1-3% of the total time allowed for each iteration. If multiple messages are sent back and forth,
this number can quickly grow. For interconnects with lower performance this can be much
larger; for example, MPICH over TCP can exhibit delays of hundreds of milliseconds (FEuro
PVM/MPI 2003 2003).

CU-Boulder is pursuing a dual track approach to the parallelizatio of Mercury:

1. Shared-memory multithreading approach which avoids the message passing overhead, and
which can be implemented on a 2 Quad-Core CP’s on our Dell Workstation. In multi-
threading the overhead of message passing is lower or nonexistant, and limits on problem
size are less of a factor since the models are relatively small (less than 1,000 DOFs). Issues
such as network reliability and bandwidth are also not a factor in multithreaded compu-
tation. We intend to use this model for the real time hybrid simulation of a reinforced
concrete frame previously tested at Berkeley (Ghannoum and Moehle), and which has
about 300 highly nonlinear elements.

2. Distributed memory approach which is currently being tested in our laboratory, and
ultimately deployed on the supercomputer described above. Ultimately, the experience
gained in parallelizing MERCURY in this environment, will help us pioneed RTHSof far
more complex structures such as cars and rockets.

9.3 Parallelism Using Task-Based Multithreading

In order to speed up computation for Mercury, multithreading was introduced to two key
sections of the program: solving the linear system, and per-element computation.

Solving the linear system is performed each and every iteration and consumes a large portion
of the computational time. In Mercury the direct-sparse solver CSparse is replaced with a
multithreaded direct sparse solver PARDISO available in the Intel MKL matrix library.

The per-element computation is in essence a large loop where each iteration of the loop
processes a single element. Since the computations within each element are independent of
other elements, the loop iterations can be sub-divided in smaller chunks which are processed
by separate processors.
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Fig. 9.1 Speedup of multithreaded Mercury compared to non-parallel Mercury

9.3.1 Parallel Speedup Using a Test Model

To quantify the speedup obtained with a shared-memory approach, a model was constructed
for Mercury representing a multi-story building composed of flexibility-based non-linear beam-
column elements. The number of stories in the building can be varied to produce a model
with the desired number of degrees-of-freedom (DOFs). The point is to examine the difference
that model size has on the effective speedup gained by multithreading. The beam-column
elements contain various nonlinear materials, including both hardening and concrete damage
material models, which combined with the flexibility-based formulation can require a large of
computation per element during the analysis.

As a result of the multithreading changes, Mercury computation speed can be increased by
up to a factor of 3.5 running on a local shared-memory processor (SMP) computer containing
four processors, as shown in figure @Il It can be observed that larger problems produce more
speedup; with smaller problem sizes the overhead of thread synchronization becomes a factor,
but with larger problems this overhead becomes less significant. Future work involves tuning
the threading granularity to reach a theoretical 4x speedup for the four processors in the SMP
computer.

9.4 Parallel computation with MPI

Mercury generally uses an implicit integration scheme based on a variation of the Newton-
Raphson method. From Fig[0.2] we note that there are two major CPU intensive operations:
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1. Determination of inverse matrix, ) and @) in Fig.

2. Element state determination for force recovery, 2 in Fig.

In our current implementation, the stiffness matrix (always symmetric and positive definite)
is only decomposed once in case of the Shing method in Fig. though each step may require
the updated stiffness matrix for accuracy. To improve the accuracy for our current implemen-
tation, we need to update a stiffness matrix which is made during structural determination as
® in Fig. It may effect the computation cost. Hence, we use MPI to determine the inverse
matrix of a updated stiffness matrix for reducing computational time and improving accuracy.

9.4.1 Message Passing Interface(MPI)

Parallel computation is accomplished by dividing a computation into parts and making
use of multiple processors, each executing on a separate processor, to carry out these parts.
Sometimes an ordinary or sequential program can be used by all the processor, but with distinct
input files or parameters. In such a situation, no communication occurs among the separate
tasks. When the power of a parallel computation is needed to attack a large problem with a
more complex structure, however, such communication is necessary.

One of the most straightforward approaches to communication is to have the processors
coordinate their activities by sending and receiving messages, much as a group of people might
cooperate to perform a complex task. This approach to achieving parallelism is called message
passing. MPI is a message-passing library specification.

9.4.2 Determination of inverse matrix with MPI

For the transient analysis, Mercury can uses initial stiffness method, modified Newton-
Raphson method, Newton-Raphson method, and Shing method which modified initial stiffness
method for transient analysis as implicit integration scheme. However, implementation methods
except for Shing method and initial stiffness method require the inverse matrix of a updated
stiffness matrix for next iteration or step. It increases computational time. While, Shing
method and initial stiffness method have a disadvantage. As we only consider Shing method,
the disadvantage of our approach is that as the analysis proceeds, the errors introduced by the
initial stiffness matrix, and the fixed number of iterations (10) increase (due to nonlinearity),
Fig. Great improvements could be achieved if we could update the stiffness matrix, however
this would interfere with the determinism imposed by our environment (real time operation).

Hence, modified Shing method includes the implementation of the algorithm shown in Fig.
0.4] (c) where we always assign to one processors the task of performing “background” decom-
position of the updated stiffness matrix, Fig. When completed, this matrix is swapped
with the active one, Fig. and [@.71 It should be noted that there always is a “time lagg”’
between the active inverse stiffness matrix (3 in the figure), and the current time increment.

9.4.3 Element state determination with MPI

Here, we modified Mercury to operate in a distributed memory computational environment,
and initially focus on the parallelization of element state determination for the force recovery
portion of the code. Again there are two possible implementations:
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Modified shing method using MPI( Parent proce}sor

Input data > Information on transient analysis
< Node information> < Element information >
Nodelnfo( str) Elementinfo( str, ele )
< Mass information > < Force information >
MasslInfo( str, ele, mat, sec) Forcelnfo( str, fos)
< Initial stiffness matrix > < Damping information >
Initial StiffnessMatrix( str, ele, sec, mat |) Dampinfo( str )

Send the child processt# of steps and # of free degrees of freedldmset matrix size up.

dest = nproces 1; tag = 0O;

sd_reqnstep = MPI::COMM_WORLD.lIsend(&fos.nstepMEI::INT, dest, tag);
sd_reqnstep.Wait(status); oo
sd_req0 = MPI::COMM_WORLD.Isend(&str.nfdofs, MPI::INT, dest, tag);

sd_req0.Wait(status);

L]

Declaration and initialization of variables in sttural level

U‘ZO, JU[ =0, u:)efore =O’u;:iesire =0,Uini :Ou'commit :OufommiIZ =0:|[ =0
u,=0, u" =0, u®™™ =0,d, =0,u, =0,0™™ =0

Ptzo, Ptint :0’ Ptint,commit ZO’PlR ZO'Peff =0

M=0, K,=0, K" K& =0,K™ =0,K, = 0,K" =0K™ =0C, =

tt o eff
L]

Declaration and initialization of variables in elent level with section and material properties

00,4.=0, J, = 0, Jaiele :O'aiele = 0,Fg = OYTiéln; = Okige= OKge=

iele —
commit _ commit _ commit — 0
Ep,iele _0' Ub,iele - 0’ Jy.ide _Uy,iae

ReceiveCEff from the child processor and
send the child processt# of free degrees of freedom = t terminate communication

source = nproces-1; tag = 2;

MPI::COMM_WORLD.Iprobe(source, tag) ==true

rv_req2 = MPI::COMM_WORLD.lIrecvC,,; , str.nf@str.nfdofs, MPI:DOUBLE, source, tag eeeee

rv_req2.Wait(status);

dest = nproces-1; tag = 0; str.nfdofs = 0; |

sd_req0 = MPI::COMM_WORLD.Isend(&fos.nfdofls, MPI::INT, dest, tag); ‘.

sd_req0.Wait(status);

Terminate the parent processor. |

Fig. 9.5 Master processor for implementation

224




Modified shing method using MPI( Child processor)

Receive' # of steps and # of free degrees of freeddmset matrix size up from parent processor.

source =0 ; tag = 0;

rv_reqnstep = MPI::COMM_WORLD.Irecv(&nstep, 1, MBNT, source, tag);
I rv_regnstep. Wait(status);

rv_reqO = MPI::COMM_WORLD.Irecv(&nfdofs, 1, M::INT, source, tag);
rv_req0.Wait(status);

L]

Declaration and initialization of variables in sttural level

Kar Cur
L]

Communication loop( 1 to unknown number)

(]

Receive nfdofs andK ;  from the child preces

source = 0; tag = 0;
>‘ rv_req0 = MPI::COMM_WORLD.Irecv (nfdofs, 1, MPI::INBource, tag);

rv_req0.Wait(status);
@ Toterminate the child processor

break;

v

source = 0; tag = 1;
>‘ rv_reql = MPI::COMM_WORLD.IrecvK s , nfdofsfdofs, MPI::DOUBLE, source, tag);
rv_reql.Wait(status);

Determine inverse matrix oK
Cu =K d( )

v

Send the parent process&eﬁ

A

dest=0; tag=2;
‘ sd_req2 = MPI::COMM_WORLD.Isend{ 4 , nfdofsdofs, MPI::DOUBLE, source, tag);
sd_reg2.Wait(status);

-

| Terminate the child processor.

Fig. 9.6 Slave processor for determination of the inverse matrix of a updated stiffness matrix
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1. Perform a domain decomposition of the finite element mesh, and assign to each CPU the
task of running that substructure.

2. Designate one master node which will run Mercury, and then assign a number of slave
nodes to perform the force recovery for the elements.

Second approach should be implemented with MPI. Modified Mercury for element state deter-
mination has number of elements from 53 to 551 by 56, and uses number of processors from
1 to 7. To compare speed-up depending on number of elements and processors, speed-up is
determined (Lazou 1988):

Execution time for uniprocessor

= 9.1
Execution time for P processors (9-1)

where, S is speed-up and P is number of processors.
Fig. and [9.9 describe average elapsed time for element state determination and speed-up
depending on number of processors.

Average elapsed time for element state determination

== of clements = 53 =M= of elements = 109 =#—# of clements = 165 —®=# of elements = 333

~+—# of elements = 389 ——# of elements = 445 #of elements = 501

0.25

02

0.15

0.1

I~
\\
\

Average elapsed time [sec]

0.05

1 2 3 4 5 6 7

Number of processors

Fig. 9.8 Average elapsed time for element state determination depending on number of pro-
Cessors
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Fig. 9.9 Speed-up depending on number of processors
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Appendix A

MATLAB USER’s MANUAL

Mercury’s input data for the Matlab and the c++ version are nearly identical. This doc-
ument describes the input for Matlab. Since the c++ version uses the Lua scripting language
(analogous to TCL in OpenSees), a simple program (to be embedded in the c¢++ version) will
translate the Matlab format into Lua scripts.

Note: In this preliminary version of Mercury, no attempt has been made to simplify (gen-
erate/automate) data entry, and there is not (yet) a mesh generator for the program. Those
are simple future developments.

A.1 Preface Block

This initial block declares units, spatial dimension of the structure, and the number of
degrees of freedom per node.

A.1.1 Unit

The Unit declares selected units for analysis.

Unit = [F, L]

F: force, and L: length units. For example Unit = [‘*kN, mm’]

A.1.2 Structural mode

The StrMode declares dimension of structure and number of degrees of freedom per node.

StrMode = [ndim, ndofpn]

where ndim refers to the spatial dimension of the structure [2|3] and ndofpn to the number
of degrees of freedom per node in global reference [2|3|6]

A.2 Control Block
The control block defines basic information about the structural analysis.
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A.2.1 Analysis

The Analysis defines the analysis mode.

Analysis = ‘AnalysisMode’

where AnalysisMode: [Static—Transient].

A.2.2 Tteration

The Iteration defines the iterative method adopted in the solution of the nonlinear system
of equations.

Iteration = ‘IterationMode’

where IterationMode can be

- Linear: Use only one single iteration to solve the nonlinear system of equations in a step.

- NewtonRaphson: Use the Newton-Raphson method in which the tangent stiffness matrix
is updated at each iteration.

- ModifiedNewtonRaphson: Use the modified Newton-Raphson method in which the tan-
gent stiffness is updated at each step.

- InitialStiffness: Use the initial stiffness matrix and the the tangent stiffness matrix
is never updated.

- ModifiedInitialStiffness: Use the initial stiffness matrix as modified by Shing for
hybrid simulation. This is limited to transient analysis.

A.2.3 Iteration for element

The IterationEle defines the iterative method adopted in the solution of the nonlinear sys-
tem of equations in element level. In Mercury, this command is only used in FlexibilityBased2DBeamColumn.

IterationEle = ‘IterationEleMode’

where IterationEleMode can be

- NewtonRaphson: Use the Newton-Raphson method in which the tangent stiffness matrix
is updated at each iteration.

- InitialStiffness: Use the initial stiffness matrix and the the tangent stiffness matrix
is never updated.

A.2.4 Integration

The Integration defines the types of numerical integration used in the transient analysis.

- Newmark # method

Integration = {‘Newmark’, {a.,, a, b, 5, v}}

- Hilber-Hughes-Taylor method(HHT method)
Integration = {‘HHT’, {ev,, a, b, a}}
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- IntegrationMode

- Newmark: Use the Newmark 3 method for transient analysis with ground accelera-
tion.

- HHT: Use the Hilber-Hughes-Taylor method for transient analysis with ground ac-
celeration. This method is often referred to as ‘@’ method.

- ayy: Coefficient premultiplying the rotational mass in a beam column. Recall that [m] =
201 pL?/210 1 0, L?/210 ], (Cook et al. 2002).

- a: Rayleigh damping coefficient of mass matrix

- b: Rayleigh damping coefficient of stiffness matrix

- [: Coeflicient  in the Newmark § method

- v: Coefficient v in the Newmark 3 method

- a: Coefficient « in the HHT method

For Example: Integration = {‘NewtonRaphson’, {1/78, 0.02, 0.08, 1/6, 1/2 }} for
linear acceleration in the Newmark § method,

A.2.5 MassInput

Lumped masses are automatically determined by Mercury. If additional masses are to be
assigned, then the MassInput command must be used and a mass specified for each node.

MassInput = { nodtag!, mi, mi[mi, mi, mi, m} ;

HOdtag> myp, Mg [m37 my, Mms, mﬁ] )

n n n n n n n
nodtag”, my, my [my, mi, mg, mg] }

MassInput is based on lumped mass. Where n is smaller than or eqaul to the total number of
nodes. At each component mg-, j means the j* degree of freedom of the i*" nodtag

A.2.6 Convergence Criteria

StrMiter = StrMax
EleMiter = EleMax
Convergence = Norm
ConvergenceEle = NormkEle
Tolerance = Tol

Where

- StrMax: Maximum number of iterations

- EleMax: Maximum number of iterations within an element when using flexibility-based
2D beam-column element with internal iteration

- Norm: User can select norm criterion for structural level. Mercury support three types,
‘DispNorm’, ‘ForceNorm’ and ‘EnergyNorm’ criterion.

- NormEle: User can select norm criterion for element level when using flexibility-based
2D beam-column element. Mercury support three types, ‘DispNorm’, ‘ForceNorm’ and
‘EnergyNorm’ criterion.
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- Tol: Convergence criteria on the residuals

Example:
FlexibilityBased2DBeamColumn in Sec. [A4l then we could have: StrMiter = 20; EleMiter
= 50; Convergence = ‘ForceNorm’;ConvergenceEle = ‘EnergyNorm’; Tolerance = 1.0e-8

A.3 Geometry Block

The geometry block defines nodal coordinates and their constraints assuming a right handed
coordinate system.

A.3.1 Nodal coordinates

The nodcoord assigns coordinates of nodes.

nodcoord = { mnodtagy, x1, ¥ [21]
nodtag;, =, ¥i [zi] ;

nodtag,, Tn, Yn [Zn] }

for example:

Node = { 1, 0.0, 0.0 ;
2, 1.0, 3.0 ;
3, 20, 00 }

A.3.2 Boundary condition

The constraint command assigns boundary conditions to the nodes. Each node has to
have as many constraint as d.o.f’s per node.

constraint = { nodtag!, id}, id} [id}, id}, idi, id}]
nodtag?, idi, idb [id, id, idL, id]

nodtag”, id?, id} [id}, id?, id?, id?] }

Where 0 corresponds to a free dof, and 1 to a fixed one. For example:
constraint = { 3, 1, 1 ;
5 1, 0 }

A.4 Element Block

The elements command defines element type, nodal connectivity, and basic sectional infor-
mation. These may vary with the element type.
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elements = { eletag;, eletype;, inj;, jn;, { SecInfo; } ;

eletag;, eletype;, in;, jn;, { SecInfo; } ;

—_

eletag,, eletype,, in,, jn,, { SecInfo, }

Where

- eletag;: Sequential integer identifying the it" element

- eletype;: i element type (see below)

- in;: First node

- jn;: Second node

- SecInfo;: Basic section information for the element (see below)

A.4.1 Truss element (Sec. [2.1])

This is the classical two noded axial element, however its cross section can be characterized
by either a constant properties; general, layered or fiber.

eletag, ‘Simple2DTruss’, in, jn, { sectag }

Where:

eletag: Element tag
- in: First node of element eletag

jn: Second node of element eletag

sectag: Integer number identifying section of the truss element eletag

A.4.2 Stiffness-based 2D beam-column element(Sec. [2.2.1])

Stiffness-based 2D beam-column element can have a constant, layered, or fiber section. Its
numerical integration is based on Gauss-Legendre quadrature rule.

eletag, ‘StiffnessBased2DBeamColumn’, in, jn, { sectag, nIp }

Where:

- eletag: Element tag

- in: First node of element eletag

- jn: Second node of element eletag

- sectag: Integer number identifying section of element eletag
- nIp: Order of integration of element eletag

A.4.3 Flexibility-based 2D beam-column element (Sec. 2.2.2])

Flexibility-based 2D beam-column element can have a constant, layered or fiber section. Its
numerical integration is based on Gauss-Lobatto quadrature rule.
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- Flexibility-based 2D beam-column with element iteration loop
eletag, ‘FlexibilityBased2DBeamColumn’, in, jn, { sectag, nIp }

- Flexibility-based 2D beam-column without element iteration loop
eletag, ‘FlexibilityBased2DBeamColumnNoIter’, in, jn, { sectag, nlp }

Where

- eletag: Element tag

- in: First node of element eletag

- jn: Second node of element eletag

- sectag: Integer number identifying section of element eletag
- nIp: Order of integration of element eletag

A.4.4 Zero-length 2D element (Sec. [2.4])

Zero length element is used to model lumped plasticity. It can account for stiffness degra-
dation in flexure and shear. It neglects axial-flexural coupling effect and depends on force and
deformation history as well as on the section characteristics.

o) 7

—> —>

Fig. A.1 Zero-length 2D element
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eletag, ‘ZeroLength2D’, in, jn, { ndofpnlocal,
mattagy, mattagy, mattags, angle }

Where:

eletag: Element tag

- in: First node of element eletag

- jn: Second node of element eletag

- ndofpnlocal: Integer number of degrees of freedom in local reference of element eletag

- mattag;: Integer number identifying material of ith d.o.f in local reference for element
eletag

- angle: Angle (in radians) between local reference and global reference of element eletag

A.4.5 Zero-length 2D section element (Sec. [2.5])

This is the counterpart of the zero length element for layered /fiber sections. It is particularly
recommended if the center of rotation in zero-length element changes with axial force and
moment.

ol I

Fig. A.2 Zero-length 2D section element

eletag, ‘ZeroLength2DSection’, in, jn, { sectag, angle }

Where:

- eletag: Element tag

- in: First node of element eletag

- jn: Second node of element eletag

- sectag: Integer number identifying section of element eletag

- angle: Angle (in radians) between local reference and global reference of element eletag
- Unit is radian.

For example, if the structure has StiffnessBased2DBeamColumn, FlexibilityBased2DBeamColumn,
and ZeroLength2DSection elements,

elements = { 1, ZeroLength2DSection’, 1, 2, {1, 0}

2, "StiffnessBased2DBeamColumn’, 2, 3, {1, 3} ;

3, 'FlexibilityBased2DBeamColumn’, 3, 4, {2, 5} ;

4, "ZeroLength2DSection’, 4, 5, {2, 0} }

[l
A
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A.5 Section Block

Section block declares section properties. sections defines section types, section properties,
and basic material information of section. Description on sections may be different depending
on types of section.

sections = { sectag;, sectype;, { SecProp; } ;

sectag;, sectype;, { SecProp; } ;

—

sectag,, sectype,, { SecProp, }

Where:

- sectag;: Sequential integer number identifying section at it section
- sectype;: Section type at it section

th

- SecProp;: Section properties and basic material information on ¢*" section

A.5.1 General section

General section has only one layer or fiber, and it in Mercury only supports elastic material
currently. Usually, if section has nonlinear material, user may use multi-layer or multi-fiber
section.

sectag, 'General’, { mattag, A, Ix, Iy, Iz}

Where:

sectag: Section tag
mattag: Integer number identifying material with sectag

- A: Section area with sectag

- Ixx: Moment inertia on z-axis with sectag
- Iyy: Moment inertia on y-axis with sectag
- Izz: Moment inertia on z-axis with sectag

A.5.2 Layer section (Sec. [2.3])

All elements in Mercury can be layered.

sectag, 'Layer’, { mattag;, A;, y-distance; ;
mattag;, A;, y-distance; ;

mattag,, A,, y-distance, }

Where:

- sectag: Section tag
- mattag;: Integer number identifying material of i layer in section sectag
- A;: i layer section area in section sectag

236



- y-distance;: i layer distance from neutral axis to centroid of i layer along y-axis in
section with sectag

A.5.3 Fiber section (Sec. [2.3))

All elements in Mercury can have fiber sections.

y y
Zfib

Fig. A.3

Fiber sections

sectag, 'Fiber’, { mattag, Aj,
mattag;, A;,

mattag,, A,,

y-distance;, z-distance;
y-distance;, z-distance;

y-distance,, z-distance,

—_ -

Where:

sectag: Section tag

- mattag;: Integer number identifying material of i fiber in section sectag

- A;: i fiber section area in section sectag

- y-distance;: i’ fiber distance from section centroid to centroid of i*" fiber along y-axis
in section sectag

- z-distance;: i fiber distance from neutral axis to centroid of i** fiber along z-axis in

section sectag

For example, if a structure has General and two Layer sections,

section= {1,’General’, {1, 100, 0, 0, 833.33\}
2, ’Layer’, 2, 1, 0.35 ;
3, 1, 0.25 ;
2, 1, 0.15 ;
2, 1, 0.05 ;
2, 1, -0.05 ;
2, 1, -0.15 ;
3, 1, -0.25 ;
2, 1, -0.25 ;

b

-
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3, ’Layer’, 3, 1, 0.35 ;
2, 1, 0.256 ;
3, 1, 0.15 ;
3, 1, 0.05 ;
3, 1, -0.05 ;
3, 1, -0.15 ;
2, 1, -0.25 ;
3, 1, -0.25}

A.6 Material Block

Material block declares material properties.

materials = { mattag;, mattypej, modulus;, density;, { MatProp; }
mattag;, mattype;, modulus;, density;, { MatProp; }

mattag,, mattype,, modulus,, density,, { MatProp, }

where:

mattag;: Consecutive integer number identifying material at i material

mattype;: Material type at i'" material

modulus;: Material modulus at i material

density;: Density at i'" material
- MatProp;: Material properties at i material

A.6.1 Elastic material

mattag, ‘Elastic’, modulus, density, { G}

Where:

mattag: Material tag

modulus: Young’s modulus of a material with mattag

density: Density of a material with mattag
- G: Shear modulus of a material with mattag

A.6.2 Hardening material (Sec. [3.1.1])

mattag, ‘Hardening’, modulus, density, { sigmaYO, Hiso, Hkin }

Where:

- mattag: Material tag
- modulus: Young’s modulus of a material with mattag
- density: Density of a material with mattag
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Fig. A.4  Zero-length 2D element

- sigmaYO0: Initial yield stress of a material with mattag
- Hiso: Isotropic hardening modulus of a material with mattag
- Hkin: Kinematic hardening modulus of a material with mattag

A.6.3 Bilinear material with isotropic hardening (Sec. B.1.2))

g
A
fy ' bE,
Ve > ¢
_fy

Fig. A.5 Bilinear material with isotropic hardening

mattag, ‘Bilinear’, modulus, density, { SigmaY0, b, al, a2, a3, a4 }

Where

- mattag: Material tag

- modulus: Young’s modulus of a material with mattag
- density: Density of a material with mattag

- sigmaYO0: Initial yield stress of a material with mattag

- b: Strain-hardening ratio between post-yield tangent and Young’s modulus of a material
with mattag

- al: Isotropic hardening coefficient 1 of a material with mattag - increase of compres-
sion yield envelope as proportion of initial yield stress after a plastic strain of a2 x
(SigmaY0/modulus)

- a2: Isotropic hardening coefficient 2 of a material with mattag
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- a3: Isotropic hardening coefficient 3 of a material with mattag - increase of tension yield
envelope as proportion of initial yield stress after a plastic strain of a4 x (SigmaY0/modulus)
- a4: Isotropic hardening coefficient 4 of a material with mattag

A.6.4 Modified Giuffre-Menegotto-Pinto material with isotropic hardening

(Sec. B.1.3)

7 » £
I

Fig. A.6 Modified Giuffre-Menegotto-Pinto material with isotropic hardening

mattag, ‘GiuffreMenegottoPinto’, modulus, density, { SigmaYO, b,
RO, n, cR1, cR2, al, a2, a3, a4, o }

Where:

- mattag: Material tag

- modulus: Young’s modulus of a material with mattag

- density: Density of a material with mattag

- sigmaYO0: Initial yield stress of a material with mattag

- b: Strain-hardening ratio between post-yield tangent and Young’s modulus of a material
with mattag

- RO: Coefficient 0 of a material with mattag to control the transition from elastic to plastic
branches - value between 10 and 20 is recommended

-n: R=RO— (RO™) % cR1*¢ / (cR2 + &) - n can have 0 and 1.

- cR1: Coefficient 1 of a material with mattag to control the transition from elastic to
plastic branches - 0.925 is recommended

- cR2: Coefficient 1 of a material with mattag to control the transition from elastic to
plastic branches - 0.15 is recommended

- al: Isotropic hardening coefficient 1 of a material with mattag - increase of compres-
sion yield envelope as proportion of initial yield stress after a plastic strain of a2 x
(SigmaY0/modulus)

- a2: Isotropic hardening coefficient 2 of a material with mattag

- a3: Isotropic hardening coefficient 3 of a material with mattag - increase of tension yield
envelope as proportion of initial yield stress after a plastic strain of a4 x (SigmaY0/modulus)

- a4: Isotropic hardening coefficient 4 of a material with mattag

- Oini: Initial stress of a material with mattag
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A.6.5 Anisotropic damage 1D material (Sec. [3.2.2])

o,
A

Fig. A.7 Concrete 1D anisotropic damage model

mattag, ‘AnisotropicDamagelD’, modulus, density,
{ v, Ko, Adamage, adamage, Dc }

Where:

- mattag: Material tag

- modulus: Young’s modulus of a material with mattag

- density: Density of a material with mattag

- v: Poisson’s ratio of a material with mattag

- ko: Initial elasticity threshold of a material with mattag
- Adamage: Damage coefficient A of a material with mattag
- adamage: Damage coefficient a of a material with mattag
- Dc: Damage limit of a material with mattag

A.6.6 Modified Kent and Park model (Sec. [3.2.7)

mattag, ‘ConcretelLinearTensionSoftening’, modulus, density,

{Uca ¢y Ocus Ecus )\7 Ut}

Where:

- mattag: Material tag

- modulus: Tension softening stiffness(absolute value) - slope of the linear tension softening
branch of a material with mattag

- density: Density of a material with mattag
- 0. Compressive yield stress of a material with mattag - Negative value

- €. Compressive yield strain of a material with mattag - Negative value

- 0y Compressive crushing stress of a material with mattag - Negative value

- €cy: Compressive crushing strain of a material with mattag - Negative value

- A: Ratio between unloading slope at e. and slope Young’s modulus of a material with
mattag

- o4 Tensile yield stress of a material with mattag
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Fig. A.8 Concrete tension linear softening model

For example, if the structure for static analysis has ConcretelLinearTensionSoftening and
Bilinear materials,
materials = { 1, ConcreteLinearTensionSoftening’, 10, 0,  {-29, -0.00221, -5.8,
-0.02, 0.027719, 2.9} ;
2, "Bilinear’, 210, 0, {290, 0.01, 0.0, 1, 0, 1} }

A.7 Force Block

Force block declares all the external forces on the structure.

forces ={ forcetype;, { ForceProp; } ;
forcetype;, { ForceProp; } ;

forcetype,, { ForceProp, } }

Where:

- forcetype;: is type of force [NodalForce| NodalDisplacement| ElementDistributedForce]|
VariableNodalForce|VariableNodalDisplacement| VariableElementDistributedForce]
GreoundAcceleration| Variable|GroundAcceleration| Force type of ith

- ForceProp;: Force properties of i forcetype

A.7.1 Nodal force

'‘NodalForce’, { nodtag), gxj, magnitude; ;
nodtag;, gx;, magnitude; ;

nodtag,, gx,, magnitude, }

Where
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- nodtag;: Node tag of i*" nodal force
- gx;: Direction on global external force at node, [1—2—3] for X, or Y or Z global axis.
- magnitude;: Magnitude of external force with node tag at i** nodal force

A.7.2 Nodal displacement

'‘NodalDisplacement’, { nodtag;, gxj, magnitude; ;
nodtag;, gx;, magnitude; ;

nodtag,, gx,, magnitude, }

Where:

- nodtag;: Node tag of i*" nodal displacement

- gx;: Direction on global reference of external displacement with node tag at i** nodal
displacement; [1—2—3] for X, or Y or Z global axis.

- magnitude;: Magnitude of external displacement with node tag at it nodal displacement

A.7.3 Element distributed force

‘ElementDistributedForce’, { eletag;, 1lx;, magnitude; ;
eletag;, 1x;, magnitude; ;

eletag,, 1lx,, magnitude, }

Where:

- eletag;: Element tag at i" element distributed force

- 1x;: Direction on local reference of external force with element tag at i element dis-
tributed force; [1—2—3] for X, or Y or Z global axis.
- magnitude;: Magnitude of external force with element tag at i" element distributed force

A.7.4 Variabel nodal force

'VariableNodalForce’, { nodtagi, gxi, {m}, --- m{, co,om" b
‘ ;

nodtag;, gxi, { m}, ce mg, o, m™ b

' ;

nodtag,, gXp, {m:, ---, mp, ---, m"} }

Where:

- nodtag;: Node tag for i*" nodal force

- gx;: Direction on global reference of external force with node tag at " nodal force;
[1—2—3] for X, or Y or Z global axis.

- z : Magnitude of external force associated with node tag at i*” nodal force and j** external
force step
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A.7.5 Variable nodal displacement

'VariableNodalDisplacement’, { nodtagi, gxi, {m}, --- m{, co,om" b
' ;

nodtag;, gx;, {m, -+ m, ---, m"}

‘ ;

nodtag,, gxp, {mb, ---, m, ---, m™} }

Where:

- nodtag;: Node tag at i nodal displacement

- gx;: Direction on global reference of external displacement with node tag at i** nodal
displacement; [1—2—3] for X, or Y or Z global axis.

- g : Magnitude of external displacement with node tag at i*" nodal displacement and j**
external displacement step

A.7.6 Variable element distributed force

'VariableElementDistributedForce’, { eletag;, lx;, {ml, -+, mf, -+, m]"}
eletag;, 1x;, { mll, Ty mf, ) mzm }
eletag,, 1x,, { m}” Tty mgz, coe,omyt }

Where

- eletag;: Element tag at i" element distributed force

- 1x;: Direction on local reference of external force with element tag at i** element dis-
tributed force; [1—2—3] for X, or Y or Z global axis.

- g : Magnitude of external force with element tag at i** element distributed force and j**
external element distributed force step

A.7.7 Ground acceleration

‘GroundAcceleration’, { factor, timestep, {mf, m{ [ mf]} ;

{mf, m/ [ mf]}

Where:

factor: Factor on gravity acceleration
timestep: Consistent time step

mX: Magnitude of ground acceleration along X-axis at ith step

mZY: Magnitude of ground acceleration along Y-axis at it step
miZ . Magnitude of ground acceleration along Z-axis at i*" step
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A.7.8 Variable ground acceleration

'VariableGroundAcceleration’, { factor, { timej, m, m} [ m?]}

{ time;, m¥, m! [ m?]} ;

] )

{ time,, mY,

Where:

- factor: Factor on gravity acceleration

- time;: Time at it" step

- miX : Magnitude on ground acceleration along x-axis at i step
- mZY: Magnitude on ground acceleration along y-axis at i*" step
- miZ : Magnitude on ground acceleration along z-axis at i*" step

For example if the structure has NodalForce and VariableNodalForce forces to node 3
along x-axis,
forces = { ’'NodalForce’, {3, 1, 50} ;
"VariableNodalForce’, {3, 1, {0, 50, 100, 150, 200, 250, 300, 350}} }

A.8 Output Block

The OutputData command is file recorder for output data.

OutputData = { OutputType;, Filename;, { Info; } ;

OutputType;, Filename;, { Info; } ;

—_ -

OutputType,, Filename,, { Info, }

Where

- Outputtype;: is [NodalDisplacement| NodalVelocity| NodalAcceleration| NodalForcel|
SectionAxialForce| SectionAxialDeformation| SectionMoment| SectionCurvature|
UniaxialStressStrainl].

- Filename;: User define

A.8.1 Nodal displacement

'‘NodalDisplacement’, 'Filename’, { nodtagy, - - -, nodtag;, - - -, nodtag, }

Where:

- nodtag;: Node tag at i*" node
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A.8.2 Nodal velocity

'‘NodalVelocity’, 'Filename’, { nodtag, - - -, nodtag;, - - -, nodtag, }

Where:

- nodtag;: Node tag at it node

A.8.3 Nodal acceleration

'‘NodalAcceleration’, 'Filename’, { nodtagy, - - -, nodtag;, - - -, nodtag, }

Where:

- nodtag;: Node tag at it node

A.8.4 Nodal force

'NodalForce’, 'Filename’, { nodtag, - - -, nodtag;, - - -, nodtag, }

Where:

- nodtag;: Node tag at i node

A.8.5 Section axial force

‘SectionAxialForce’, ’'Filename’, { secnumj, eletag; ;
;
secnum;, eletag; ;
;

secnum,, eletag, ;}

Where:

- secnum;: Section of secnum” integration point in an element with eletag
- eletag;: Element tag at it" element

A.8.6 Section axial deformation

‘SectionAxialDeformation’, ’'Filename’, { secnumj, eletag; ;
secnum;, eletag; ;

secnum,, eletag, ;}

Where:
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- secnum;: Section of secnum’” integration point in an element with eletag
- eletag;: Element tag at it" element

A.8.7 Section moment

‘SectionMoment’, ’Filename’, { secnumj, eletag; ;
secnum;, eletag; ;

secnum,, eletag, ; }

Where:

- secnum;: Section of secnum’” integration point in an element with eletag
- eletag;: Element tag at it" element

A.8.8 Section curvature

‘SectionCurvature’, ’'Filename’, { secnum, eletag; ;
secnum;, eletag; ;

secnum,, eletag, ; }

Where:

- secnum;: Section of secnum’” integration point in an element with eletag
- eletag;: Element tag at it" element

A.8.9 Uniaxial stress and strain

‘UniaxialStressStrain’, ’'Filename’, { fibernum;, secnum, eletag; ;
fibernum;, secnum;, eletag; ;

fibernum,,, secnum,, eletag, ; }

Where:

- fibernum;: fibernum!” layer/fiber with secnum and eletag
- secnum;: Section of secnum’” integration point in an element with eletag
- eletag;: Element tag at it" element
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Appendix B

C++ USER’s MANUAL

248



Appendix C

Notation

int
PS
ext
Pt
int
Pt
Pint
u
R
Pt
Uy
F.
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Internal nodal force vector

External nodal force vector at free degrees of freedom at structural level
Internal nodal force vector at free degrees of freedom at structural level
Internal nodal force vector at constraint degrees of freedom at structural level
Residual nodal force vector at free degrees of freedom at structural level

Nodal displacement vector at free degrees of freedom at structural level
Element nodal force vector in global reference

|Nx1, Vy1, Mz1, Nxa, Vy2, Mza|T

Internal element nodal force vector in global reference

Element nodal displacement vector in global reference

lux1, vy1, 071, uxa, vy2, 0z2)7

Element nodal force vector in local reference with rigid body modes

[Nat, Vi, Moy, Nag, Vip, Moo]”

Internal element nodal force vector in local reference with rigid body modes
Element nodal displacement vector in local reference with rigid body modes
(U1, Uy1, 0:1, Uxa, Uya, Oz2]7

Element nodal force vector in local reference without rigid body modes

| M.y, M., Nyo)”

Internal element nodal force vector in local reference without rigid body modes
Residual element nodal force vector in local reference without rigid body modes

Element nodal displacement vector in local reference without rigid body modes

{ézh 6227 ﬂf:(:2JT

Residual element nodal displacement vector in local reference without rigid body modes
Section displacement vector

lu(), v(z)]"

Section force vector

Plastic stress
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os(z) = |N(x), M(x)]"

o™ (x) : Internal section force vector

ol () :  Residual section force vector

€s(x) : Section deformation vector

es(z) = lea(®), d:(2)]"

gi"(r) : Residual section deformation vector

o : Uniaxial stress

€ : Uniaxial strain

or :  Uniaxial stress of layer/fiber

Er : Uniaxial strain of layer/fiber

Ny(z) : Shape function on displacement field

Bi(z) : The matrix derived from the derivatives of Ny(x)

Ny¢(x) : Shape function on force field

Kg : Augmented stiffness matrix at structural level

Ky

Ky,

Ko

Koy

K. : Element stiffness matrix in global reference

k. :  Element stiffness matrix in local reference with rigid body modes
Ei“" Element tangent stiffness matrix in local reference with rigid body modes
k. : Element stiffness matrix in local reference without rigid body modes
Ce : Element flexibility matrix in local reference without rigid body modes
ks(x) : Section stiffness matrix

kle"(z) :  Section tangent stiffness matrix

cs(x) Section flexibility matrix

E(zx) Elastic modulus

A(z) Section area

I (x) : Moment of inertia on section area

od, : Virtual element nodal displacement vector in local reference

0es(x)  :  Virtual section deformation vector

L. : Element length

r. : Transformation matrix between local and global coordinate system
T, : Transformation matrix between rigid body modes and no rigid body modes
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Subscri
t

- A ® 3 O oy £

noo
Supersc
mnt

ext

R

k

J

pt

Known traction

Known displacement

Structural level

Element level or e element at element state determination
Layer/fiber level or 7" layer /fiber at layer/fiber state determination
Section level or s section at section state determination
Displacement field

Force field

Current step of External force/displacement vector
ript

Internal

External

Residual

k' iteration at structural level

4% iteration at element level
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