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Carl, Jochen (PhD, Dept. of Civil, Environmental and Architectural Engineering) 

Improved dynamic testing by impedance control 

Thesis directed by Professor Dr. Sivaselvan V. Mettupalayam 

Hybrid testing combines physical testing with numerical simulation. A substructure, 

whose inelastic response is difficult to predict, is tested physically while the rest of 

the structure is simulated numerically. The computed boundary conditions for the 

physical substructure are applied to the structure. The corresponding response of the 

physical model is fed back to the numerical model which based on this feedback 

computes the boundary conditions for the next time interval. 

The motivation of this study emerged from inaccuracies and instability problems in 

hybrid testing, which result from bad or unstable actuator tracking. Those problems 

are mainly present if the physical substructure is very stiff.  

This dissertation presents an actuator control mechanism which allows for accurate 

and stable dynamic testing of any structure stiffness by integrating the actuator-

structure-interaction into the control design. This is achieved by controlling the 

actuator impedance as a function of the structure stiffness. Stability requires that the 

actuator does not act like a rigid but a flexible device which deforms due to the 

interaction force. In this study feedforward control is used to achieve accurate 

actuator tracking while controlling its required flexibility. The presented control 

model allows for stable and accurate actuator tracking for both nonlinear and super 

stiff structures.  
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1. INTRODUCTION 

Hybrid testing is an experimental technique for simulating the dynamic response of 

structures with respect to the time domain, and combines a computational with a 

physical model. A substructure is tested physically while the rest of the structure is 

simulated in the numerical model. Hybrid testing allows for the testing of large 

structures and provides more accurate results than just analytical methods alone. This 

is because of using measured restoring forces and displacements instead of the 

mathematical description of the non-linear model which is very hard to predict 

accurately. The dynamic responses of a specimen advance in a step-by-step manner 

through direct integration. The data obtained from the previous time step is used to 

compute the responses for the current time step. The controller-actuator serves as the 

connecting device between the numerical model and the physical substructure 

( 3Figure 1.1). It therefore plays a significant role in regard to stability and accuracy of 

the test and will be in the focus of this study.  

actuatorcontroller actuatorcontroller

 

Figure 1.1: Interaction of numerical and physical model through manipulator 
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In current dynamic testing of structures, actuators operated in feedback control are 

used to apply prescribed displacements or forces to components or substructures. 

Depending on the properties of the structure, displacement or force control may be 

more appropriate. Typically, actuators are designed for good position control, and 

are therefore meant to be mechanically stiff systems [36]. So, when the tested 

structure is relatively flexible, displacement control is convenient. However in some 

cases, for instance when the tested structure is very stiff or has inertia, force control 

allows for more accurate and stable testing than displacement control. Force control 

has therefore been applied in advanced seismic testing techniques such as the 

effective force method [11, 48, 60, 61] and forms of real-time dynamic hybrid testing 

[41]. Due to the inherent stiffness of the actuator however, force control is very 

sensitive to control parameters and can lead to instability because of system 

uncertainties or poor design of the control gains. Different methods have been 

developed to overcome these problems. A dual compensation scheme has been 

employed by MTS [35], with a primary displacement and secondary force feedback 

loop. Sivaselvan et. al. [55] applied dynamic force control with a hydraulic actuator 

in displacement feedback by introducing a flexible spring between the actuator and 

the structure. In other scenarios, a combination of force and displacement control 

may be necessary. For example, Pan et. al. [38] have used a mixed control strategy, 

where each degree of freedom is controlled in one of the two modes. On the other 

hand, Elkhoraibi and Mosalam [34] and Tzierakis and Koumboulis [57] have 

adopted a strategy of switching between the control modes at the same degree of 

freedom, based on the instantaneous stiffness. For both control modes, the control 
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system commonly used is of the PID (proportional, integral, derivative) type. This 

design however does not explicitly take into account the interaction between the 

actuator and the tested structure, and therefore does not perform well when the 

properties of the structure change drastically during the course of a test.  

In this study feedforward compensation is presented as a strategy to integrate the 

actuator-structure-interaction into the control design. If the displacement x of an 

actuator is considered as its output, then the actuator may be thought of as a two-

input-one-output system, the two inputs being (i) the control input u (for example the 

current input to a hydraulic servovalve or the voltage input to an electromagnetic 

coil), and (ii) the interaction force F at the interface with the tested structure. This is 

shown in 3Figure 1.2a. The idea of feedforward compensation is to annihilate the 

effect of the interaction force by modifying the control input as shown in 3Figure 

1.2b. 

uxH
+ x

u

fxHF

-

uxH
+ x

u

fxHF

-

ff
uxH

+ x
u

fxHF

-

uxH
+ x

u

fxHF

-

ff

 
Figure 1.2: Compensation for actuator-structure-interaction in displacement control 

Similarly, if the force F at the interface is considered as the output, then the actuator 

can again be thought of as a two-input-one-output system, this time inputs being (i) 

the control input u, and (ii) the displacement x (or the velocity x� ) at the interface as 

shown in 3Figure 1.3a. Again, the idea is to eliminate the effect of the interaction 

displacement (or velocity) by modifying the control input as shown in 3Figure 1.3b.  
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Figure 1.3: Compensation for actuator-structure-interaction in force control 

Thus, if the objective is to track a certain quantity at the interface, then the strategy is 

to use the work-conjugate of that quantity for feedforward compensation. Dimig et. 

al. [11] employed this idea for dynamic force control by using velocity feedforward. 

This study applies the strategy for displacement control when the tested structure has 

a large (perhaps varying) stiffness. It places the feedforward strategy in the more 

general framework of impedance control, and provides a methodology analyzing the 

stability and the reference tracking accuracy of such a system. The feedforward 

strategy shown in 3Figure 1.2 and 3Figure 1.3 cannot be implemented exactly since the 

inverse transfer functions involved are non-causal. Approximate implementations are 

therefore necessary. Different such feedforward schemes will be discussed. While all 

schemes improve the actuator tracking capability, two of them additionally 

controlling the actuator impedance in response to a changing structure stiffness.  

This study is presented in eight chapters: 

Chapter two comprises a literature review of all earlier and currently used algorithms 

and testing methods in hybrid testing. The chapter explains the mentioned schemes 

which compensate for inaccurate actuator tracking.  

Chapter three explains the dynamics of hydraulic and electromagnetic actuators 

using linear systems theory. Based on the transfer function of the controller-actuator-
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structure system, all the stability bounds of the system are derived. It explains how 

the structure stiffness and the applied controller gains affect the dynamic behavior of 

the system and why in particular stiff structures cause a high risk of instability.  

Chapter four introduces the idea of impedance control.  

Chapter five derives all parameters of the used electromagnetic actuator by 

comparing the modeled response with the different measured frequency response 

functions. A close match between the modeled and the measured frequency response 

functions give a good confirmation about the accuracy of the derived parameters.  

Chapter six designs and applies impedance control in form of feedforward schemes 

for the chosen actuator setup. The force derived feedforward scheme is shown as a 

model which achieves stable and accurate actuator tracking even for nonlinear and 

super stiff structures. 

Chapter seven integrates feedforward into hybrid testing. The analytical results are 

confirmed by different laboratory tests. 

Chapter eight concludes the study. 

Appendix A presents different algorithms which are used in hybrid testing and 

illustrates their advantages and disadvantages in regard to numerical damping, 

accuracy and frequency dependency. 

Appendix B explains different impedance control schemes used in robotics and their 

possible application in hybrid testing. 

Appendix C summarizes all transfer functions used for the electromagnetic actuator. 
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2. HYBRID SIMULATION 

This chapter includes a general review about hybrid testing. It presents the different 

algorithms used to integrate the equation of motion in the numerical substructure, 

explains all potential error sources in the hybrid loop and reviews all currently used 

error compensation schemes.  

To simulate the hybrid system, the complete structural model is idealized as a 

discrete parameter system with a finite number of degrees of freedom. The equation 

of motion is shown in equation 3(2.1), where M, C and K are the mass, damping and 

stiffness matrices. 

 1 1 1 1n n n nMu Cu Ku P+ + + ++ + =�� �  (2.1) 

One or more physical subsystems can be tested simultaneously. Each subsystem 

represents one degree of freedom, in equation 3(2.2) shown by the index i.  

 1 1 1 1
i i i i i i i

n n n nm u c u k u p+ + + ++ + =�� �  (2.2) 

If, for instance, the stiffness ik  is tested physically, then it is replaced in the equation 

of motion by the directly measured interaction force ir . 

 1 1 1 1
i i i i i i

n n n nm u c u r p+ + + ++ + =�� �  (2.3) 

Equations 3(2.2) and 3(2.3) are equivalent if the structure stiffness is linear and if the 

actuator perfectly applies the displacement 1
i
nu +  on the structure. The equation of 

motion is solved using forward marching time stepping integration algorithms. The 

components of a hybrid test are shown in 3Figure 2.1. 
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Figure 2.1: Components for hybrid test 

The online computer integrates the equation of motion utilizing the measured work 

conjugate, i.e. the restoring force for a commanded displacement or the 

corresponding displacement in force control. For each time step, the integrator 

computes the target displacement or force and sends a command to the actuators. 

The actuator applies the boundary condition to the structure and measures the 

corresponding response. This resulting work conjugate is then sent back to the 

integrator, which based on this information consequently solves for the boundary 

condition of the next time step.  

The displacement controlled method applies a displacement to the test structure and 

measures the resulting force as schematically represented in 3Figure 2.2. It can be 

easily implemented with conventional quasi-static testing equipment and with some 

basic knowledge on numerical time integration techniques [54]. The method is called 
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pseudodynamic as the structure is deformed by the actuator according to the dynamic 

load input of the structure.  

 

Figure 2.2: Pseudodynamic test method (UBC/EERC 2005-02) 

Hybrid testing also brings new challenges and difficulties in regard to stable and 

accurate testing. Errors in the numerical and physical substructure can lead to 

inaccuracies or instability. 3Figure 2.3 shows the hybrid loop in more detail with its 

functionalities and potential errors. The errors occur at different locations in the test 

loop but always affect the whole system. Different error compensation schemes are 

used both in the numerical and physical substructure. In the following, the different 

components in 3Figure 2.3 will be explained in detail. 
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Figure 2.3: Hybrid loop with all functionalities and errors 
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2.1. Interpolation and extrapolation 

Fast update rates provide for a continuous motion of the actuator improving the 

speed of testing and decreasing the force relaxation of structural materials. However, 

this also brings new challenges in regard to solving the equation of motion within the 

defined time, and dealing with the inherent control error and response lag of servo-

hydraulic and electromagnetic systems. Inter- and extrapolation can allow for a 

smoother actuator movement and improved tracking. In order to reduce the actuator 

delay it is sometimes reasonable to send a predicted, extrapolated displacement to 

the actuator so that the actuator displacement matches approximately the 

commanded displacement. Nakashima [37] published a polynomial approximation 

procedure for multi-degree of freedom systems using a Digital Signal Processor 

(DSP). Using the Lagrangean polynomial, the extrapolated displacement results from 

the target displacements from earlier time steps and the most recently computed 

target displacement. Both for the displacement and velocity, a third and fourth order 

interpolation was found as the most reasonable in regard to accurate results and 

limited processing time.  

2.2. Errors 

3Figure 2.3 shows different error sources, which can emerge from both substructures. 

In the While some errors only affect the accuracy of the results, others can cause 

instability and often require the application of error compensation schemes. 
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2.2.1. Sources of errors 

 Error

Implementation E. Modeling E. Experimental E.

Random E. Systematic E.

Displacement control error
Measurement error 
Actuator delay 
Error propagation  

Figure 2.4: Errors in pseudodynamic testing 

Hybrid simulations are affected by errors based on modeling, implementation 

techniques and experimental setup as shown in 3Figure 2.4. Modeling errors result 

from the discretization of the continuous real system, assuming a finite number of 

degrees of freedom and lumped masses. The accuracy of the solution therefore can 

depend on the number of degrees of freedom. Implementation errors occur because 

the time integration methods, which are used to solve the differential equation of 

motion, use a numerical approximation for the displacement and velocity. 

Experimental errors result from the displacement control of the actuator, calibration 

errors in the instrumentation, noise generated in the instrumentation, analog to digital 

converters, support movement and inconsistent actuator motion [49].  

From these sources of errors, experimental errors usually have the most substantial 

impact on the simulation results, mostly because these errors are not known prior to 

testing and can be large for improperly tuned experimental setups. They can be either 

random or systematic in nature. For both, the rate of cumulative error growth 
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increases with the step size Ω , which is the product of the frequency ω  and the time 

step h. In other words, high frequency modes embody a higher error than low 

frequency modes. 

2.2.2. Random experimental errors 

Random errors are mostly measurement errors, i.e. the experimenter measures a 

different displacement and force than has been applied to the specimen in reality. 

Noise in the measured forces, which can be seen as random errors, can excite 

spurious response in the high frequency modes. Algorithms with numerical damping 

can be used to suppress the response of those higher modes. Solving the integrated 

equation of motion [7] is one way to reduce those errors as the integration of the 

force signal filters the noise in the measurements prior to being introduced into the 

numerical algorithms. In general, random errors are not as problematic as systematic 

errors, as they do not always build up in the same direction and therefore partially 

cancel each other out. For explicit methods the cumulative growth of random errors 

can be minimized by a small time interval h.  

2.2.3. Systematic experimental errors 

Systematic errors are reproducible inaccuracies, which add up in the same direction. 

As in pseudodynamic testing the numerical and physical models are connected with 

a closed loop, the errors propagate due to the repetition in each time step. If they are 

energy adding, the numerical result can grow indefinitely and become unstable. 

Because of these possible resonance-like effects [52], systematic errors are more 
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detrimental than random errors, which produce a negligible effect on the structural 

response. 

2.2.3.1. Actuator dynamics and delay 

If the actuator is not able to track the reference displacement, then the displacement 

error of the actuator results in force measurements at the incorrect displacements. 

Consequently the measured forces are introduced into the numerical integration 

algorithm assuming they correspond to the target displacement. If the actuator 

constantly lags the reference signal, this produces a reverse hysteresis loop and this 

way adds energy into the system. This effect of negative damping can cause 

instability if it is not compensated for by enough other damping in the system. It is 

thus necessary to compensate for the actuator delay, but an overcompensation of the 

phase delay might also lead to instability. 3Figure 2.3 shows the current compensation 

methods used. While the extrapolation and prediction schemes try to decrease the 

actuator delay, the I-modification scheme reduces the force error and thereby the 

added energy into the system. Also numerical damping can compensate for the 

negative damping due to the actuator delay, damp out higher frequencies and 

stabilize a low damped system. Those schemes will be discussed further below. 

2.2.4. Error propagation 

How harmful an error is on the overall results depends on its propagation in the 

repetitive hybrid loop. The error propagation can be evaluated with error 

amplification factors, which can be achieved with a spectral analysis. The errors, 

introduced in each time step, are multiplied by the error amplification factors and 
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add up with the previous errors to the cumulative error. So, small error amplification 

factors are desired. A big error amplification factor implies a poor accuracy but not 

automatically instability. 

Chang’s [5] unconditionally stable explicit pseudodynamic algorithm provides better 

error propagation than comparable algorithms, such as the Newmark explicit 

method. Likewise, the earlier presented integrated equation of motion [7] has lower 

error amplification factors as the original equation of motion, although qualitatively 

they are the same.  

The earlier mentioned I-modification scheme from Combescure and Pegon [10] is 

another way to successfully reduce the experimental error. The force feedback is 

corrected by ( )IF K r xΔ −∼ , where IK  is the estimated initial tangent stiffness of 

the structure, r the reference displacement command to the actuator and x the 

effectively applied displacement of the actuator. The I-modification will be used in 

chapter seven to compensate for the actuator delay. Combescure and Pegon stated 

that stability is reached when the implicit stiffness of the algorithm is chosen higher 

or equal to the real tangential stiffness of the structure TK , hence I TK K≥ . This 

however is not valid anymore if the actuator dynamics are taken into account. 

Instability due to an overcompensation with the I-modification method will be 

illustrated in chapter seven. 

2.3. Algorithms 

There are multiple ways to integrate the differential equation of motion. All 

algorithms approximate the differential equation by finite difference equations and 
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can be evaluated in terms of certain characteristics, such as stability, energy 

conservation and numerical damping. The right choice of the algorithm depends on 

multiple factors, such as the system parameters, the test environment, the loading 

speed, the actuator delay and the desired accuracy. In general, choosing an algorithm 

will be a trade-off between stability, accuracy and computation time. The 

characteristics of the algorithm can be evaluated with a spectral decomposition.  

2.3.1. Spectral decomposition 

In algorithms, the dynamics (displacements, velocities and accelerations) of the new 

time step can be expressed in terms of the results of the last time step. For free 

vibration systems, the dependency of the new to the last time step can be expressed 

as in equation 3(2.4). A is called the amplification matrix and relates the dynamics of 

the new time step to the dynamics of the previous time step.  

 1
1

1 0

n n
n

n

x Ax

x A x
+

+
+

=

=
 (2.4) 

The Eigenvalues λ  of the amplification matrix A determine the stability, the 

numerical frequency ω  and the numerical damping ζ  of the algorithm. They are not 

the same as the natural damping ζ  and natural frequency ω  of the structure model, 

but depend on them instead.  

Depending on the algorithm, there are two complex conjugate eigenvalues and a 

third eigenvalue that is either zero or any real number. Any eigenvalue λ with real 

part a and imaginary part b can be expressed in polar coordinates. The numerical 
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damping ζ , the numerical frequency ω  and the damped numerical frequency Dω  

can be derived as shown in equation 3(2.5). 

 
arctan( ) ( )2 2 D

bi i haa ib a b e e ζω ωλ − ±= ± = + =  (2.5) 

Generally, all the eigenvalues have to be checked and the most critical one is of final 

interest. If the solution is a bounded oscillatory response, two of the eigenvalues of A 

are complex conjugates. The third eigenvalue is called the spurious root since it does 

not stand for a realistic numerical solution of free vibration [50]. The natural and the 

damped natural step will be expressed as t hω ωΩ = Δ =  and D DhωΩ = . The 

numerical step and damped numerical step are shown correspondingly as hωΩ =  

and D DhωΩ = . From the shown relations the numerical damped step and the 

numerical damping result as shown in equation 3(2.6). 

 2 2

( )

ln( )
2

D
bArcTan
a

a bζ

Ω =

+
= −

Ω

 (2.6) 

2.3.2. Stability 

“A stable method is defined as one by which the numerical solution of a free-

vibration response will not grow without bound for any arbitrary initial conditions” 

[50]. This implies that the absolute values of all eigenvalues do not exceed the 

absolute value of 1, i.e. all the eigenvalues have to be within the unit circle in the 

complex plane [51]. This can be seen more easily if the amplification matrix A is 

expressed in modal coordinates as TA φ λφ=  in the single degree of freedom 
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(SDOF) case and TA = Φ ΛΦ  in the multi degree of freedom (MDOF) case, where φ  

is the mode shape vector and Φ  the mode shape matrix. For a SDOF equation 3(2.4) 

can be changed as follows: 

 1 1
1 0 0

n T n
nx A x xφ λ φ+ +
+ = =  (2.7) 

For | | 1λ > and a high number of n, 1nλ +  and likewise 1nx +  grow to infinity and the 

solution goes unstable. An algorithm is stable if a small change of the input leads to 

a small change in the response. It is unstable however, if the response grows to 

infinity. If the method is stable and the numerical solution approaches the exact 

solution for very small time steps, the method is convergent [50]. 

2.3.3. Shared characteristics of algorithms 

Several algorithms will be presented in the following. The different algorithms differ 

in regard to stability, numerical damping and period distortion. Generally, instability 

can be seen in two different ways. One is, that at least one eigenvalue of the 

amplification matrix exceeds the absolute value of 1. Simultaneously, this instability 

can be seen as negative numerical damping. This means that energy is added into the 

system and instability may happen. While most implicit methods are unconditionally 

stable, the explicit methods are conditionally stable, depending on the step Ω. The 

natural step Ω also affects the period distortion. While the natural and numerical 

frequencies are equivalent for infinitely small time steps, the period distortion 

generally grows with increasing time step.  



 

 

 

17

2.3.4. Newmark method 

The first group of algorithms to find widespread use was the Newmark family, in 

which approximate relations are used to express the displacement and velocity 

vectors 1nu +  and 1nu +�  at the new time 1nt +  in terms of the new acceleration vector 

1nu +��  and current values of displacements, velocities and accelerations.  

 

1 1

2 2
1 1

1 1 1 1

(1 )
1( )
2

(1 ) (1 ) (1 )

n n n n

n n n n n

n n n n n n n

u u u h u h

u u u h u h u h

Mu Cu Cu Ku Ku P P

γ γ

β β

α α α α α α

+ +

+ +

+ + + +

= + − +

= + + − +

+ + − + + − = + −

� � �� ��

� �� ��

�� � �

 (2.8) 

Equation 3(2.8) shows the Newmark α  method or Hilber-Hughes-Taylor method. 

The elimination of 1nu +  and 1nu +�  from the equation of motion at time 1nt +  results in a 

system of equations for the acceleration vector at 1nt + . h denotes the integration time 

step. The Newmark algorithm is popular due to its simplicity, however it has 

shortcomings relating to high frequency components, algebraic constraints and lack 

of exact conservation properties [24].  

   
Newmark family 

 Newmark α method 
HHT method

explicit
Central Difference Method

Constant Acceleration Method
Explicit α Method

Modified Newmark Method

implicit 
  

Constant Average Acceleration Method   
Linear Acceleration Method   

Implicit α Method   

 
Figure 2.5: Newmark methods 
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3Figure 2.5 shows the Newmark family methods. The tuning of the parameters α, β 

and γ creates both explicit and implicit methods with different characteristics. 

Explicit methods compute the response of the structure of step i+1 based on the 

results of step i. They are easier to implement and usually preferred for hybrid 

simulations, however usually have more restrictive stability criteria related to the 

natural step Ω . Implicit methods require information about the structural response at 

the displacement target in order to satisfy equilibrium at the end of the step. They 

provide for better stability characteristics and enable the use of bigger time steps. 

The operator-partitioning algorithm is a combined implicit-explicit integration 

algorithm. The following predictors are calculated explicitly. 

 
1

2
1

ˆ (1 )
1ˆ ( )
2

n n n

n n n n

u u u h

u u u h u h

γ

β

+

+

= + −

= + + −

� � ��

� ��
 (2.9) 

The predicted displacements are applied to the physical model and the force response 

is measured. Then one can solve for the new acceleration and then update with 

correctors.  

 

1
1 1

1 1 1
2

1 1 1

ˆ

ˆ

n n
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u u u h

u u u h
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−
+ +
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=
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� ���
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 (2.10) 

where 2M M h C h Kγ β= + +�  and 1 1 1 1
ˆ ˆn n n nP P Cu Ku+ + + += − −� � . The advantage of using 

the operator splitting method is that unconditional stability is guaranteed for non-

linear structures of the softening type. In this study the OS-method is applied with 

only one iteration step assuming a linear structure stiffness. Combescure and Pegon 
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[10] used a linearization of the earlier shown α-method, the α-Operator Splitting. By 

using a predictor step, this implicit scheme becomes non-iterative. The feedback 

force is approximated by 

 1 1 1 1 1 1( ) ( ( ) )I I
n n n n n nr d K d r d K d+ + + + + +≈ + −� ��  (2.11) 

where 1nd +
�  is the predicted displacement and IK  the initial stiffness. I.e. they 

applied the I-modification scheme within the first and only iteration step.  

2.4. Summary 

This chapter explained the different components of hybrid testing and all currently 

used algorithms, prediction schemes, inter- and extrapolation schemes, as well as 

error compensation schemes. Experimental errors are the most significant error 

source in hybrid testing and results to a large degree from bad actuator tracking. 

Compensation schemes such as numerical dissipation or the I-modification method 

cannot improve the actuator tracking but only mitigate its harmful effect on the 

hybrid system. The next chapter illustrates the reasons for bad actuator tracking and 

explains why good tracking requires the integration of the actuator-structure-

interaction into the control design. 
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3. ACTUATOR DYNAMICS AND STABILITY 

This chapter shows in what way the actuator-structure-interaction and specifically 

the structure stiffness affect the tracking of both hydraulic and electromagnetic 

actuators. The transfer functions of both types of actuators are derived and their 

similarities shown. The stability is analyzed with the poles of the transfer functions 

in the frequency domain.  

3.1. Stability theory of linear systems 

Creating a transfer function requires the transformation of the differential equation of 

the system from the time domain into the frequency domain, also called “s-domain”, 

by using the Laplace transform. The transfer function can then be expressed as the 

relation between the input and output. 

 ( ) ( )( )
( ) R( )

x t output X sH s
r t input s

= = =  (3.1) 

where r is the reference input, x the reference output and H the transfer function 

relating the output to the input. 

3.1.1. Poles of the transfer function 

The solutions of the denominator of the transfer function are called the poles of the 

system. The location of the poles in the s-domain gives information about the system 

dynamics in regard to stability, damping and oscillatory behavior. Equation 3(3.2) 
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shows that the denominator consists of real poles and pairs of complex conjugate 

poles. 

 
2

2 2
1

( ) 1( ) ...
R( ) 2

n

n n

output X sH s
input s s p s s

ω
ζω ω

= = = + +
+ + +

 (3.2) 

The time response for a real pole is 

 1( ) ( ) tH s h t e
s

σ

σ
−= → =

+
 (3.3) 

The time response of a complex conjugate pole is an oscillating response.  

 
2

2 2 2
( ) ( ) (sin )

2 1
tn n

d
n n

H s h t e t
s s

σω ω ω
ζω ω ζ

−= → =
+ + −

 (3.4) 

It is obvious that a response is only stable if all poles have a negative real part, so 

that 0te σ− →  for t →∞ . In other words, stability is only achieved if all poles are 

placed in the left half plane (LHP). 

3.2. Similarities between both actuators 

The following paragraphs explain and compare the functionalities of the hydraulic 

and electromagnetic actuator. The dynamics of both actuators are remarkably 

similar. For example, a “natural velocity feedback” is observed in the hydraulic 

actuator dynamics (see for example [11]). The back EMF plays an identical role in 

the electromagnetic actuator dynamics. The linearization of the electromagnetic 

actuator dynamics has a real pole and a complex conjugate pair of poles. The 

hydraulic actuator has three poles with identical roles, and additional poles 
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depending on the modeling of the servovalve dynamics [21, 32]. The analysis and 

strategies presented in this study apply to both actuators. 

3.3. Hydraulic actuator 

During a test involving servo-hydraulic actuation, a servovalve controller compares a 

command signal to a feedback signal and sends the generated valve command signal 

to the servovalve to drive the valve spool. The spool controls the hydraulic fluid into 

the chambers of the actuator. The pressure difference between the two chambers 

multiplied by the actuator piston area produces the force applied to the test structure 

[60].  

3.3.1. Valve command signal 

The valve command signal v can be expressed as 

 [ ( ) ( )]F p dv C K r x K r x= − + −� �  (3.5) 

where r is the command signal, x is the feedback signal and CF converts these 

physical signals into voltage signals. Kp and Kd are respectively the proportional and 

derivative gain settings in the servovalve controller.  

3.3.2. Dynamics of servovalve 

The dynamics for a three-stage servovalve can be described as 

 ev v ev v ev vv m x c x k x= + +�� �  (3.6) 
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where vx  is the main-stage spool opening and , ,ev ev evm c k  are the equivalent mass, 

damping and stiffness of the servovalve. 

3.3.3. Flow property of the servovalve 

The flow property of the servovalve, which relates the main-stage spool opening to 

the hydraulic flow it controls, can be formulated as 

 1
| |

v
v v

v s

x pQ K x
x p

= −  (3.7) 

where Q  is the flow into the actuator chambers, vK  is the main-stage servovalve 

flow gain, sp  is the hydraulic supply pressure and p is the load pressure. The square 

root term is named “load pressure influence” and introduces nonlinearity to the 

system.  

3.3.4. Conservation of mass 

The actuator dynamics are given by 

 1aQ K p C p Ax= + +� �  (3.8) 

where aK  is the hydraulic fluid compressibility coefficient, 1C  is the leakage 

coefficient, A  is the actuator piston area and x�  is the piston velocity. The 

conservation of mass shows a feedback path from the structural velocity response x�  

to the hydraulic flow into the actuator. This resulting loop is referred to as the 

“natural velocity feedback”.  
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3.3.5. Linearization 

The presented actuator dynamics show a relationship between the oil flow in the 

piston and the load pressure. The interaction force changes the pressure difference in 

the piston which can inhibit or increase the oil flow.  

F
pA pB

F
pA pB  

Figure 3.1: Pressure difference in actuator 

Static equilibrium in 3Figure 3.1 yields  

 A B
Fp p p
A

= − =  (3.9). 

Substituting 3(3.9) into 3(3.7) shows that the oil flow depends on the interaction force: 

   1
| |

v
v v

v s

x FQ K x
x Ap

= −     

 (3.10)  

The piston velocity then yields 

 12 21
| |

v v
v a

v s

x x F F Fx K K C
A x Ap A A

= − − −
�

�  (3.11) 

This shows that the piston movement is inhibited by the actuator-structure-

interaction force. Like stated in the introduction this means for a displacement 

controlled actuator, that the applied displacement x depends on two input variables: 

the reference command displacement u and the interaction force F.  
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Figure 3.2: Inputs for displacement controlled actuator 

3Figure 3.2 repeats the earlier shown diagram. The two transfer functions of the 

system both yield displacement output but have different input parameters. ( )uxH s  

gives the resulting displacement output due to the desired displacement input, while 

( )fxH s  gives the resulting displacement output due to the interaction force. For a 

linear system, those two displacement outputs superimposed form the final actuator 

displacement. The transfer functions result from the actuator properties, such as 

piston area, actuator mass, oil bulk modulus, supply pressure, oil density, oil 

viscosity and others. The two transfer function in equations 3(3.12) and 3(3.13) result 

from the linearization of the actuator dynamics according to Kuehn et al [25].  

    2 2( )
( )( 2 )

actgain
ux

a a

K
H s

s s p s sζω ω
=

+ + +
  

 (3.12) 

 2 2

2( )
( 2 )

a
fx

a a

sH s
s s s

ζω
ζω ω
+

=
+ +

 (3.13) 

aω  denotes the eigenfrequency of the actuator oil column, ζ  the inherent actuator 

damping and p the reciprocal of the inherent actuator delay.  
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3.3.6. Effect of large structure stiffness 

For a linear structure stiffness without any mass or damping, the interaction force 

can be calculated directly from the applied actuator displacement. The open loop 

transfer function olH  in equation 3(3.14), relating the displacement output to the input 

signal, represents the structure stiffness as a parameter which determines the system 

dynamics. 

+
-

uxH

k

u

uxH

disp x

F

+
-

uxH

k

u

uxH

disp x

F

 

Figure 3.3: Block diagram of open loop transfer function 
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1

( 2 ) ( 2 ) ( ( 2 ) ) 2
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fx

actgain

a a a a a a

HxH
u kH

K
s p s k p s k p p s pkζω ζω ω ζω ω ζω

= =
+

=
+ + + + + + + + +

 (3.14) 

For proportional feedback control, the input voltage u is the displacement error, 

hence the difference between reference displacement r and applied displacement x, 

multiplied with a proportional gain pK , ( )pu K r x= − . The closed loop transfer 

function then relates the reference command r to the applied displacement x. 

 

4 3 2 2 2

1

( 2 ) ( 2 ) ( ( 2 ) ) 2

p ux
cl

fx p ux

p actgain

a a a a a p actgain a

K HxH
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The stability of the system depends on all parameters and will be analyzed with 

Routh criteria as well as bode and root locus plots [14]. Routh criteria reveals an 

upper stability limit for the proportional gain:  

 

3 2 2

2

3 2 2 3

2

2 ( ( 2 ) ( 2 ))
( 2 )

2 ( 2 )) 2
( 2 ) ( 2 )

a a a a
p

actgain a

a a a a
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p p p k
K p K p

ζω ζω ζω ω
ζω

ζω ζω ω ζω
ζω ζω

+ + + +
<

+

+ +
= +

+ +

 (3.16) 

Equation 3(3.16) illustrates that the upper limit for the proportional gain grows with 

increasing stiffness. This however, does not justify the application of a higher gain 

for higher stiffness, as will show the following root locus plot. As the influence of 

the structure stiffness and the controller gains on the system both depend on the oil 

column frequency aω , the closed loop transfer function is now represented in non-

dimensional parameters. 

4 3 2( 2 ) ( 2 1) ( ( 2 ) ) 2cl
ratio ratio ratio

GainH
S P S K P S K P P S Gain PKζ ζ ζ ζ

=
+ + + + + + + + + +

 (3.17) 

where  

 
2

2 4
p actgains s

ratio
a a a a a

K Kks pS P K Gain
k

ω
ω ω ω ω

= = = = =  (3.18) 

The stiffness ratio ratioK  represents the relations between the spring stiffness and the 

actuator stiffness. 3Figure 3.4 plots the root locus or the closed loop transfer function 

and changing gain for 100P =  and 0.1ζ = .  
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Figure 3.4: Root locus for hydraulic actuator and different stiffness ratios 

3Figure 3.4 shows that for a growing stiffness ratio the poles shift upwards and 

towards the imaginary axis. Hence, this movement is independent of the oil column 

frequency. This effect is likewise present for the electromagnetic actuator. 

3.4. Electromagnetic actuator 

The use of an electromagnetic actuator will allow for a smaller and cleaner test setup 

where no hydraulic oil pressure is necessary. Further advantages of electrodynamic 

shakers are the long stroke, good linearity and a wide frequency response. The 

structure of an electrodynamic shaker resembles to a common loudspeaker, but is 

more robust. A coil of wire is suspended in a fixed radial magnetic field. When a 

current is passed through this coil, an axial force is produced in proportion to the 

current. 

The electrical impedance increases with frequency due to the skin effect. When the 

coil moves within the magnetic field, a voltage is generated across the coil in 
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proportion to the velocity. This back EMF (electromotive force) is seen in the 

electrical domain as an increase of the coil impedance and reflects the mechanical 

activity in the electrical circuit.  

The performance is generally limited by different factors, such as the thermally 

determined maximum coil current, the maximum current capacity of the amplifier, 

the maximum voltage capability of the amplifier, the stroke capability of the shaker 

or the maximum armature force capability. 

3Figure 3.5 shows the schematic of an electromagnetic actuator. A wire coil moves 

within a fixed magnetic field and represents the accelerating element in the actuator. 

Bl i

F

diRi L
dt

η = +

u Bl vη = −
,m c

Bl i

F

diRi L
dt

η = +

u Bl vη = −
,m c

 

Figure 3.5: Electromagnetic actuator 

A conductor carrying a current in a magnetic field experiences a force perpendicular 

to both the magnetic field lines and the direction of the current flow. In the case of 

the actuator, a current i in the coil results in a force Bl i , where B is the magnetic 

field and l is the conductor making up the coil [26]. The motion of the coil is resisted 

by inherent mechanical damping in the actuator as well as by eddy-current damping. 

The effects of these may be lumped approximately into a linear viscous damping 

coefficient, c. The equation of motion of the coil is therefore mx cx Bli F+ = −�� � , 
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where m is the moving mass, x is its displacement, and F is the force at the interface 

with the tested structure. The motion of the wire coil in the magnetic field in turn 

results in a voltage Bl x� , called the back EMF, that opposes the externally applied 

voltage. If the inductance and resistance of the coil are L and R respectively, then the 

control input voltage u and the current i in the coil are related by diu Blx L Ri
dt

− = +� . 

The above two equations can be represented in state space form as  
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 (3.19) 

where x1 = x, x2 = x� and x3 = i represent the displacement, velocity and current.  

3.4.1. Linearization 

3Figure 3.6 shows the open loop block diagram for this system where the force 

coupling is modeled as the product of the applied actuator displacement and the 

structure stiffness. The transfer function from the control input u to the actuator 

displacement x can be derived as  

 3 2 2( ) ( ( ) )ol
x BlH
u mLs mR cL s kL cR Bl s kR

= =
+ + + + + +

 (3.20) 

It can be seen that again the poles of the transfer function are determined not only by 

the actuator properties, but also by the structure stiffness. 
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Figure 3.6: Open loop block diagram for electromagnetic actuator 

3.4.2.  Effect of large structure stiffness 

Like before for the hydraulic actuator, the closed loop transfer function is derived for 

proportional feedback control (equation 3(3.21)) and the maximum allowable gain is 

derived (equation 3(3.22)) using again the Routh criterion [14]. 

 3 2 2( ) ( ( ) )
p

cl
p

K BlxH
r mLs mR cL s kL cR Bl s kR K Bl

= =
+ + + + + + +

 (3.21) 

 

2

max
(( ) )( )

p
Bl cR cL mR ckLK

Bl Lm
+ + +

≤
 (3.22) 

Again the maximum allowable gain is a function of the structure stiffness and the 

transfer function can be represented in nondimensional parameters. The actuator 

frequency aω  and damping aζ  have been derived for free motion as 

2( )
a

Bl cR
Lm

ω +
=  and 

24 (( ) )
a

cL Rm
Lm Bl cR

ζ +
=

+
 from the two complex conjugate pair of 

poles of the transfer function in equation 3(3.20), such that 

 2 2 2 2

1 1 /( 0)
( ) ( ) 2ol

a a

Bl Bl mLH k
s mLs mR cL s cR Bl s s sζω ω

= = =
+ + + + + +

 (3.23) 
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With the substitutions n
a

RR
Lω

= , 
a

sS
ω

= , 
3a
a

BlG
Lmω

=  and 

2 2( )ratio
a a

k k kLK
k m Bl cRω

= = =
+

 the open loop transfer function yields 

 3 22 (1 )
a

ol
a ratio n ratio

GH
S S K S R Kζ

=
+ + + +

 (3.24) 

The stiffness ratio ratioK  again relates the stiffness of the structure to the “stiffness” 

of the actuator in free motion. 3Figure 3.7 shows the root locus plot for the 

nondimensional transfer function and increasing gain. The used parameters 

correspond to the actuator which is used in the later examples. 
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Figure 3.7: Stiffness dependent root locus of closed loop transfer function 

It can be seen that for given proportional gain and increasing stiffness ratio, the real 

pole shifts farther into the left half plane, while the complex conjugate pair of poles 

converges towards the imaginary axis. The real pole shift leads to faster dynamics, 
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and so does not affect the response significantly. The complex conjugate pair of 

poles on the other hand leads to oscillatory response. The settling time and damping 

ratio of the system are related to the real part of these poles. This implies that for a 

high structure stiffness, the system has a very low damping and high settling time. 

Oscillations will not be effectively damped out and in the worst case, system 

uncertainties can shift the poles into the right half plane, resulting in instability. The 

following example shows how an uncertainty in the form of a small time delay can 

easily destabilize a system with high structure stiffness. 

3.5. Instability due to high stiffness 

A closed-loop system is said to be robustly stable if the controller stabilizes a class 

of perturbations of the nominal system. If the open loop transfer function olH  is 

perturbed by time delay τ , then the perturbed transfer function is given by  

 1
1

s
ol olH e H H

s
τ

τ τ
−= ≈

+
 (3.25) 

The class of such transfer functions may be considered as multiplicative 

perturbations of the form (1 ( ) ( ))olH H W s sτ = + Δ , where ( )W s  is a real function 

representing the magnitude of the perturbations and ( )sΔ  is such that ( ) 1sΔ ≤  and 

represents phase uncertainty [14]. For the case of equation 3(3.25), ( )W s  is given by 

 ( )
1

ol

ol

H H sW s
H s
τ τ

τ
− −

= ≈
+

 (3.26) 
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Robust stability is met if ( ) ( ) 1clH j W jω ω < , where clH  is the earlier derived closed 

loop transfer function of the original system without delay [14]. For the presented 

electromagnetic actuator, this requires 

3 2 2 2 2 2

( ) ( )

1
[ ( ) ] [ ( ) ] 1 ( )

cl

p

p

H j W j
K Bl

mL kL Bl cR K Bl kR mR cL

ω ω

ωτ
ω ω ω ωτ

=

<
− + + + + − + +

 (3.27) 

for all ω. Considering the values Bl = 26.31 N/A, 3.58R = Ω , L = 0.08 H, c = 11 

Ns/m and m = 2.275 kg, corresponding to the actuator used in this study, and 

choosing a proportional gain max0.8p pK K= , which is required in order to get good 

actuator tracking, the frequency function in equation 3(3.27) is plotted in 3Figure 3.8 

for a time delay of 2 msτ = . Two stiffness ratios are considered, 0ratioK = , i.e. free 

motion, and 3ratioK =  ( 30 kNk
m

= ). 
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Figure 3.8: Robust stability criterion fails due to high stiffness 
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4Figure 3.8 shows that the system is robustly stable in free motion for perturbations in 

form of time delays up to 2 ms. When the system is attached to a structure of very 

high stiffness however, then it lacks robust stability. Summarizing, a high structure 

stiffness leads to low system damping resulting in high overshoot and highly 

oscillatory time response. Furthermore, system uncertainties can quickly lead to 

instability. It is thus important that the actuator control adjusts to the structure. This 

can be achieved by controlling the actuator impedance, as will be explained in the 

following chapter. 
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4. IMPEDANCE CONTROL 

It is evident from the previous discussion, that it is important to explicitly account 

for actuator-structure interaction in the control design of a test system. As outlined in 

the introduction, a strategy to do so is using feedforward. Here, this strategy is 

further motivated using the notion of impedance control [17].  
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Figure 4.1: External force on coupled system 

4Figure 4.1 shows an additional external force acting on the coupled actuator-

structure system. The closed loop transfer function of this system can be written as 

 cl cl ext
p

R Lsx H r H F
Bl K
+

= −  (4.1) 

The second transfer function of equation 4(4.1) can be interpreted as the compliance 

(frequency-dependent flexibility) of the combined actuator-structure system. The 

inverse of this is the impedance (frequency-dependent stiffness). Clearly, if the 

impedance is large, then the response of the system is insensitive to force 

disturbances at the interface, and hence to uncertainties in the structure model. So, 

the design of the test system with explicit consideration of actuator-structure 
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interaction may be viewed as designing a suitable impedance of the system. The 

impedance however cannot be arbitrarily increased, because this would imply 

shifting the poles of the closed-loop system in a manner that would result in 

undesirable dynamic behavior, and in the worst case, instability. The target 

impedance is therefore established by the desired locations of the closed-loop poles, 

which in turn are based on well-known heuristics for closed-loop pole placement 

[14]. 

From equation 4(4.1), the impedance K̂  of the coupled system can be considered as 

the sum of the actuator impedance and the structure stiffness, as shown in equation 

4(4.2). 

 
3 2 2( ) ( ( ) )ˆ pext

ext

mLs mR cL s cL Bl s Bl KxK k
F R Ls

+ + + + +
= = +

+
 (4.2) 

Given a target impedance, it is therefore seen, that the actuator impedance and the 

structure stiffness must complement each other, i.e., the actuator impedance has to 

decrease if the structure stiffness increases and vice versa. Furthermore, equation 

4(4.2) can be written as 

 
2 2( ) ( )ˆ pBl KLms mR cL s cR BlK s k

R Ls R Ls
+ + + +

= + +
+ +

 (4.3) 

from which it can be seen that with a proportional feedback controller, the gain is the 

only tool that allows modification of the actuator impedance in accordance to the 

structure stiffness. Due to the finite actuator impedance, the interaction force F  

affects the actuator movement. The actuator displacement in free motion is 

superimposed by the force dependent displacement xF.  
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3 2 2( ) ( )

( 0)

F
p

F
p

R Lsx F
Lms mR cL s cR Bl s Bl K

Rx s F
Bl K

+
=

+ + + + +

= =
 (4.4) 

Note, that there is even statically the actuator is deformed by the interaction force. 

The actuator must allow this deformation in order to maintain the required 

impedance. On the other hand, accurate actuator tracking is desired. Feedback 

solutions, such as a PID controller may improve tracking in particular cases, but the 

objective here is to adjust the system impedance and decouple the structure from the 

actuator. Feedforward will now be presented as a way to compensate for the 

deformation due to the interaction force while maintaining the target actuator 

impedance. 

4.1. Impedance control by feedforward 

Feedforward applies another input to the actuator which helps improve its tracking 

while maintaining the impedance of the coupled system. In this work, the 

feedforward signal is designed to compensate for the static deformation only. This 

means that for a constant reference displacement, feedforward eliminates the effect 

of the actuator-structure-interaction. It is practically impossible to completely 

compensate for the interaction in the dynamic case, as this would require the 

prediction of the interaction force at the moment the feedforward signal must be 

applied. The closed loop system is again a two input system, one input being the 

reference displacement command r and the other one still the interaction force F. 

(find derivation in appendix C). 
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 ( )
1

ux p

ux p p

H K R Lsx r F
H K Bl K

+
= −

+
 (4.5) 

In order to compensate for the interaction force, the required feedforward is 

p

R Lsff F
Bl K
+

= . But this transfer function is improper. So the feedforward term is 

approximated with the static component 
p

Rff F
Bl K

= . Chapter six will present 

different feedforward models and explain their advantages and disadvantages. 

4.2. Summary 

So far it has been explained that the actuator must allow a deformation in response to 

the interaction force. This way the actuator has a certain impedance, which is 

required to adjust to a changing structure stiffness. As the poles of the system 

compliance or the zeros of the impedance are equivalent to the poles of the closed 

loop transfer function, the system dynamics can be controlled by controlling the 

impedance. A target impedance can be defined from design heuristics which relate 

the complex conjugate pair of poles to the system response in the time domain. 

Feedforward is as a tool to compensate for the actuator-structure-interaction while 

maintaining the requirement of the actuator flexibility. A stiffer structure requires a 

softer actuator, which means that the actuator deforms more to the interaction force 

but compensates for it with a higher feedforward input.  
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5. SYSTEM SETUP AND IDENTIFICATION 

In chapter 3, the transfer function of an electromagnetic actuator has been derived. 

This chapter derives all unknown actuator parameters by comparing different 

measured frequency response functions (FRF) to the simulated FRF from the 

assumed actuator model. The good match between the measurement and simulation 

shows that the actuator model is valid, that the system is fully understood, and that 

the derived parameters are sufficiently accurate. Moreover this chapter presents the 

whole test setup, including the host and target computer, amplifier, actuator, test 

specimen, as well as all measurement devices. 

5.1. System Setup 
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Figure 5.1: System deployment diagram 

4Figure 5.2 shows the test setup including the structure stiffness. The actuator is 

mounted on a steel plate which lies on the shown table. Different measurement 

devices at the end of the actuator arm are used to document the applied displacement 

(LVDT), acceleration (accelerometer) and interaction force (load cell). The LVDT is 

placed opposite of the actuator to avoid an interaction between the magnetic field of 
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the actuator and the wire coil inside the LVDT. The different components will now 

be explained in detail. 

Host computer

Target computer

Amplifier
actuator structure

Host computer

Target computer

Amplifier
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Target computer
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Figure 5.2: Test setup 

5.1.1. Host computer and real-time processor 

The setup shows two computers, the host and target machine. If the test is run in 

non-real-time, then the target computer can likewise be used as the host computer. 

For real-time simulations the host is needed, running in non-real-time, downloading 

the executable file to the target and serving as the user interface, while the target 

machine performs all computations in real-time. The target machine can be booted 

into labview windows or labview real-time. 

5.1.2. Amplifier 

The amplifier receives a command from the processor and sends the amplified 

command in form of a current to the actuator. The amplifier can be run in either 

voltage mode or current mode. In voltage mode the current output depends on the 
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shaker impedance and the mechanical load impedance. Due to the back EMF and the 

coil inductance the actuator movement is damped and produces an approximate 

“constant velocity response”. This mode is therefore used for most tests. 

The current, which the amplifier sends to the actuator and which flows through the 

actuator coil, can be read from the current monitor output. In current mode this 

current monitor output represents the input signal multiplied by the amplifier gain in 

current mode. In voltage mode the current monitor output will not be proportional 

anymore to the input signal, as the current flow will depend on the actuator 

impedance.  

In current mode the shaker has minimum effect on the system damping. The output 

current is directly related to the input voltage, regardless of the shaker impedance or 

load impedance, so that the voltage input is directly related to the applied force. The 

current mode is later used to derive parameters and properties of the actuator. 

5.1.3. Measurement devices 

Apart from the voltage input and the current flow in the actuator coil, there are three 

more dimensions which can be measured: the actuator displacement, the actuator 

acceleration and the interaction force with the connected structure. The used devices 

are described briefly. 

5.1.3.1. LVDT 

The actuator displacement is measured with an LVDT and the corresponding LVDT 

Signal Conditioner (LVC 2412). It provides a low distortion sine wave to excite the 
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LVDT and employs a synchronous demodulator to convert the LVDT’s AC output 

signal to more useful DC outputs proportional to core positions. Additional circuitry 

provides span and zero adjustability and a two-pole low pass output filter. No phase 

adjustment is needed and a low noise system response is achieved.  

5.1.3.2. Load cell 

The used load cell (model LC202-500) can take loads up to 500 lbs. Testing low 

stiffness, this high range load cell unfortunately has a relatively noisy response. The 

AC powered signal conditioner (model DMD-465WB) features a frequency response 

up to 2 kHz. It contains a precision differential instrumentation amplifier with 

filtered output and a highly regulated, low noise, adjustable output bridge excitation 

source.  

5.1.3.3. Accelerometer 

The model ADXL203 is a high precision, low power, dual axis accelerometer with 

signal conditioned voltage outputs, measuring acceleration with a full-scale range of 

1.7g± . The typical noise floor is 110 /g Hzμ . For the low frequency range the 

LVDT signal therefore has been taken as a more accurate to derive the transfer 

function. For the chosen excitation frequency of 5V  the output yields 1000 /mV g . 

5.2. System identification 

Some properties of the amplifier and actuator are known and have already been 

shown. In the following, the missing parameters will be derived experimentally. 

Those parameters are for example the amplifier gain, the eigenfrequencies of the 
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system in current and voltage mode, the inductance of the coil and the eddy current 

damping, its mechanical damping, as well as the stiffness of the four rubber bands 

which are inherent in the actuator. 

Different frequency response functions are measured, using as the in- and output the 

actuator displacement (LVDT), the actuator acceleration (accelerometer), the current 

flow in the actuator coil (current monitor output of the amplifier) and the stimulus 

(input signal to the amplifier in either volts for voltage mode or amperes in current 

mode). The comparison of the measurements with the modeled responses allows the 

derivation of the missing parameters and shows that the linearized actuator model is 

accurate enough.  

5.2.1. Current mode 

If the system is run in current mode, then the sent signal from the processor directly 

relates to the current in the actuator coil. 

5.2.1.1. Decay method 

Running the system in the CURRENT OFF mode reduces the system damping to the 

mechanical damping only. The amplifier basically absorbs the eddy current damping 

and the back EMF, which is created in the coil due to its movement within the 

magnetic field. This way no electrical damping is present. The actuator is released 

from a position outside of equilibrium and the displacement is measured via the 

LVDT. 4Figure 5.3 shows one of the test samples. Due to the mechanical damping of 

the actuator, the actuator returns to the neutral position after a few oscillations. 
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Figure 5.3: Decay method in CURRENT OFF mode 

The mechanical damping ratio mζ  is derived with the decay method, represented in 

equation 4(5.1), where iu  is the maximum displacement in cycle i and i nu +  the 

maximal displacement n cycles later. 

 1 ln( )
2

i
m

i n

u
n u

ζ
π +

=  (5.1) 

The average mechanical damping ratio results as 0.15mζ ≈ .  

5.2.1.2. TF displacement/current 

In current mode, the resonance frequency of the system is very low. Therefore the 

frequency response in current mode is measured with an LVDT providing that the 

accelerometer is noisy for the corresponding low frequencies. By testing the system 

in current mode, the high source resistance of the amplifier provides very little 

damping. The high resonance peak in the response is limited by the mechanical 

damping of the actuator, hence the internal damping in the silicone rubber and 

rolling friction of the bearings. As in current mode the effect of the back EMF and 
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the coil impedance is compensated for, the relation between the current input to the 

amplifier and the resulting actuator displacement, which is measured with the LVDT 

can be represented by the following block diagram. 

input signal

Bl

force/current
ratio

displacement

Gc

amplifier
gain

1

m.s  +c.s+k2 dispFi

 

Figure 5.4: Current-displacement block diagram 

It can be seen that the current input is directly proportional to the resulting force. If 

there were no rubber bands and no mechanical damping in the actuator, the input 

current would also be proportional to the acceleration. The open loop transfer 

function of the system relating the actuator displacement to the current input can 

now be written as: 

 2
c

ix
m

Bl GH
ms c s k

=
+ +

 (5.2) 

Again it should be noticed that the damping c in the block diagram is only due to the 

mechanical damping mc and not electrical damping, it is therefore represented as mc  

in equation 4(5.2). The actuator has four internal rubber bands, acting like a low 

structure stiffness connected to the actuator. The main purpose of those rubber bands 

is, that the actuator can get centered and that no over-travel in open loop occurs. This 

stiffness k represents the sum of the stiffness of the structure and the rubber bands. 

The two figures below show the measured frequency response function (FRF) for 

magnitude and phase. 
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Figure 5.5: Magnitude plot in current model 
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Figure 5.6: Phase plot in current mode 

This system has one pair of complex conjugate poles, which cause a resonant peak. 

The system damping and the stiffness of the rubber bands can therefore be derived 

from the resonance peak, which is found at about fcurrent=1.53Hz=9.6rad/s. Knowing 

the moving mass of the actuator, the total stiffness due to the four diagonal rubber 

bands approximates 

 2 210 1.2rubber current
N lbk m
m in

ω= ≈ =  (5.3) 
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From the resonance peak, the damping ratio can be approximated as shown in Figure 

5.5, resulting in 1 20.5( ) 0.2mζ β β= − ≈ . This is a confirmation of the earlier received 

damping ratio in equation 4(5.1). As the resonance of this system is known, the 

absolute mechanical damping of the actuator can be derived. 

 
2 4

4 43.7 6 9 0.03 0.05

m
m current m current

m current m m

c f
m

Ns kg lb sc mf
m s in

ζ ω πζ

π ζ ζ

= =

= ≈ = → = →
 

 (5.4) 

The mechanical properties of the actuator have been derived. The remaining 

unknown parameter in equation 4(5.2) is the amplifier gain in current mode cG . In 

current mode, the input signal to the amplifier is read as the desired current in 

amperes. Different measurements relating the input current to the applied 

displacement allow for the derivation of the amplifier gain, resulting in an average 

value of 4.25cG ≈ . This means that in current mode the stimulus, which is a current 

in amperes, leads to an actuator displacement as follows: 

 [ ] [ ] 4.93 [ ] 21 [ ]c c
s

Bl ind in G input A G input A input A
k A

= = ≈  (5.5) 

Further tests are presented which confirm the derived parameters. 
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5.2.1.3. TF current monitor output / current input 
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Figure 5.7: Amplifier gain in current mode 

The current monitor output documents the current output of the amplifier which is 

equivalent with the current flowing through the actuator coil. 4Figure 5.7 shows the 

current monitor output over the applied current stimulus. The peak occurs at the 

earlier shown actuator eigenfrequency in current mode. This is reasonable as at this 

eigenfrequency the actuator has the highest velocity. The amplifier has to 

compensate for the resulting high back EMF by providing a higher current. As the 

velocity increases linearly with growing frequency it is reasonable that the amplifier 

gain likewise increases linearly. This effect is comparable to the earlier shown effect 

in the hydraulic actuator, which was unable to apply force at the resonance 

frequency, as the movement of the actuator created a vacuum in the oil column.  

5.2.1.4. Confirmation of the derived parameters 

The measured frequency response function relating the actuator displacement to the 

current input is tried to be matched with the derived values. The derived values result 
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as accurate, although a slightly higher amplifier gain and slightly lower mechanical 

damping seem more convenient to match the results. In the following the used 

parameter values are used to match the measured FRF. 

 2.275 5 210 26.31 4.25m c
Ns N Nm kg c c k Bl G
m m A

= = = = = =  (5.6) 

Equation 4(5.7) shows the frequency dependent magnitude and phase of the actuator 

displacement as a function of the current flow. 4Figure 5.8 compares the measured 

FRF with the modeled FRF using the parameters in equation 4(5.6). 
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Figure 5.8: Comparison of measured and modeled FRF in current mode 

The measured phase response again shows a continuously growing phase lag over 2 

Hz. The theoretical model has only two poles, which should lead to a phase lag of -

180 deg and not more. This continuous increase in phase lag is due to a time delay. 
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Measuring the time delay and subtracting it from the system response allowed a 

good match between the model and the measurement for higher frequencies. 

5.2.2. Voltage mode 

4Figure 5.9 shows the open loop block diagram from 4Figure 3.3 rearranged. It should 

be mentioned that the amplifier gain is not equivalent anymore with the earlier 

derived amplifier gain in current mode. Now, the input to the amplifier is a voltage. 

The current, which finally flows through the actuator coil, depends on the back EMF, 

the eddy current damping and the coil impedance. 

TF LVDT/currentinput
voltage

displacement
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amplifier
gain

Bl

m.s  +(c+Kd)s+k2
m.s  +(c+Kd)s+k2

L*m.s  +((c+Kd)*L+m*R)s  +Bl^2+k*L+(c+Kd)*R.s+k*R3 2

Coil Impedance

i
V

 

Figure 5.9: Simplified OL block model in voltage mode 

This block collocation shows the difference between the current mode and the 

voltage mode. The input to the amplifier in current mode is amplified and sent as a 

current directly through the actuator coil. In the voltage mode the input voltage is 

amplified with a different gain. The current through the amplifier is then determined 

by both the mechanical and electrical system parameters, as shows the block 

represented as the actuator impedance. The latter part of the block diagram relates 

the current through the actuator coil to the applied displacement. This part looks 

equivalent to the earlier presented model in current mode. However, there is one 

significant difference. In the current mode the system damping was due to the 

mechanical damping of the actuator only. Any current losses in the coil due to eddy 
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current damping were compensated for by the amplifier, so that the desired current 

flow was guaranteed. Now, the damping includes both the mechanical damping of 

the actuator as well as the eddy current damping dK  in the coil. In other words the 

current through the coil may result in a low actuator displacement, providing that 

there might be energy losses in form of heat. The eddy current damping can 

therefore be approximated by relating again the actuator displacement to the current. 

5.2.2.1. TF displacement / current monitor output 

4Figure 5.10 shows the differences to the earlier displacement/current FRF in current 

mode ( 4Figure 5.4). 

displacementcurrent input

Bl

m.s  +(c+Kd)s+k2i

 

Figure 5.10: Displacement/current in voltage mode 

The damping includes the eddy current damping and no amplifier gain can be 

measured anymore as the current monitor output is the current which directly flows 

through the actuator coil and does not pass the amplifier anymore. 
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Figure 5.11: FRF (LVDT/current) in voltage mode 

4Figure 5.11 shows that due to the eddy current damping in voltage mode the 

resonance peak decreases. The curve match is possible for an overall damping of 

 11total m d
Nsc c K
m

= + =  (5.8) 

If the amplifier gain in current mode is taken into account, then the two measured 

frequency response functions, relating the actuator displacement to the current flow, 

can be compared. 4Figure 5.12 shows the lower frequency peak in voltage mode due 

to the additional electrical damping. While for low frequencies the mechanical 

damping might be dominant, the eddy current damping will determine the high 

frequency damping due to its frequency dependence. However it will be reasonable 

and sufficiently accurate to model the system damping according to equation 4(5.8). 
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Figure 5.12: Comparison of measured frequency response in current and voltage mode 

5.2.2.2. TF current monitor output / voltage 

The remaining unknown parameters are the inductance L of the actuator coil and the 

amplifier gain vG  in voltage mode. In the previous paragraph the latter part of 4Figure 

5.9 has been measured. Now, by relating the current monitor output to the input 

voltage signal, the first section will be examined. 
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Figure 5.13: FRF (current/voltage) 

The low frequency response allows a conclusion about the amplifier gain, which 

could be approximated as 25vG =  from the measurement. For very high frequencies 

the transfer function can be approximated as: 

 ( ) v
iv

GH s
Ls

→∞ =  (5.9) 
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This shows that for growing frequency the coil inductance is the determining factor 

in reducing the system response. The coil inductance L could be approximated from 

the measured magnitude plot in the high frequency range as 0.08L H= . 

All parameters from the earlier shown model could be derived. In the following 

measurements their accuracy and reliability will be tested. The transfer function is 

rewritten below with c representing the total damping including both the mechanical 

and eddy current damping. 

 
2

, 3 2 2( )
( ) ( )vi ol v

ms cs kH s G
Lms cL mR s Bl kL cR s kR

+ +
=

+ + + + + +
 (5.10) 

4Figure 5.14 shows that the model and the measurement are relatively close for the 

derived parameters. The continuous phase drop in the measurement has earlier been 

shown as a consequence of the time delay. 
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Figure 5.14: Current/Voltage FRF modeled and measured 
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5.2.2.3. TF displacement/voltage 

The following test finally checks the accuracy of the derived open loop transfer 

function in equation 4(3.20), which relates the voltage input to the applied actuator 

displacement. All parameter units have been shown in the metric system. The open 

loop transfer function in equation 4(3.20) will therefore yield the displacement in 

meters for an input voltage in volts. As the LVDT measures the displacement in 

inches a conversion factor conv from meters to inches will be introduced into the 

equation in addition to the amplifier gain Gv.  

 3 2 2( )
( ) ( )

v
ol

G conv BlxH s
Blu Lms cL mR s kL cR s kR

= =
+ + + + + +

 (5.11) 

Again with s jω=  the magnitude and phase yield 

 
2 2 2 3 2

3 2

2

( )
[ ( ) ] [( ) ]

( )( ) [ ]
( )

v
ol

ol

G conv BlMag
BlkR cL mR kL cR Lm

mL kL Bl cRarcTan
kR mR cL

ω
ω ω ω

ω ωθ ω
ω

=
− + + + + −

− + +
=

− +

  (5.12) 

The measured and modeled FRF are close (4Figure 5.15). The actuator model is 

therefore valid and the derived parameters are sufficiently accurate.  
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Figure 5.15: Open loop FRF (displacement/voltage) measured and simulated 

5.2.3. System uncertainties 

The actuator parameters were derived measuring different time and frequency 

responses. The good match between the modeled and measured FRF indicates that 

the model captured all poles and zeros of the system in the low frequency range, i.e. 

the dynamics of the electromagnetic actuator are fully understood. However, in none 

of the different measurements a perfect match could be achieved between the model 

and the measurement. In this paragraph, potential factors are discussed which cause 

the deviation between the model and the measurement. 

5.2.3.1. Time delay 

The time delay has been shown as the major reason why the phase lag continuously 

increases. It does not affect the magnitude plot and does not introduce any more 

zeros or poles to the system. Chapter 3 has already introduced the transfer function 

affected by a time delay as sH H e λ
λ

−= . This indicates that the time delay grows for 

increasing frequency. 
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5.2.3.2. Eddy current damping 

The effect of the eddy current damping has been shown by comparing the 

displacement/current FRF in voltage and current mode. It has been modeled as a 

constant which adds up with the mechanical damping of the actuator. In reality 

however, the eddy current damping is highly frequency dependent [44, 56]. It is 

probably one of the biggest factors explaining differences between the model and the 

measurement, especially for growing frequencies. Also the eddy current damping is 

not visible the same way for all the frequency response functions. It can cause some 

change in the current flow, which would be visible both in the current monitor output 

and the LVDT measurement. However, it also leads to pure energy loss in form of 

heat, which is only visible in the LVDT measurement but not in the current monitor 

output.  

5.2.3.3. Amplifier poles and zeros 

The amplifier has been treated as a proportional gain for both current and voltage 

mode. In reality the amplifier has its own dynamics which introduce poles and zeros 

to the system [13, 20, 42]. Those poles and zeros however are above the frequency 

range which has been measured. Hence, it is justified to assume the amplifier as a 

proportional gain only. 

5.2.3.4. Coil impedance 

The coil impedance has been modeled as a resistor in series with an inductive coil. In 

reality however, the coil impedance is not only linearly frequency dependent. This 

means that for growing frequencies the model becomes less accurate. It is very 
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difficult to capture the coil impedance accurately, however and the approximated 

inductance L can be seen as sufficiently accurate for all the different measurements. 

5.2.3.5. Nonlinearity of rubber bands 

It often turned out that for the same kind of test, the amplification factor in the 

frequency response varied depending on the input magnitude. As for both a large and 

small input good coherence could be achieved, it is possible that the actuator acts 

nonlinearly. One major reason is the nonlinearity of the rubber bands. 

5.2.3.6. LVDT offset 

Due to the friction of the rubber bands it is difficult to find a zero offset for the 

LVDT. After a movement the actuator will usually not go back to the initial point 

before the test. The rubber bands deform and slip over the bearings and sometimes 

center the actuator at slightly different positions after the test. This makes it hard to 

find a zero offset for the LVDT.  

5.2.3.7. LVDT and actuator friction 

The LVDT could not be centered without any friction. The actuator movement is 

therefore slightly inhibited by the friction within the LVDT device. Moreover there 

is friction in the actuator which is not captured by the transfer functions. 

5.2.3.8. Soil-structure-interaction 

The actuator and the structure are fixed to a steel plate and are therefore relatively 

fixed to each other. However the steel plate is not bolted to the ground but lies on a 
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nonrigid table. There is though some interaction between the steel plate and the 

table, in general terms a soil-structure interaction. An analysis of this effect however 

concluded, that no other setup must be chosen. Even though there is some distortion 

of the results due to the table especially in the eigenfrequency range of the actuator, 

it turned out as small enough. 

5.2.3.9. Sampling frequency 

The different frequency response measurements require input about the sampling 

frequency and number of data points. By this discretization process the continuous 

signal is sometimes not fully captured. Especially for high frequencies leakage and 

aliasing may influence the accuracy of the results. 

5.2.3.10. Inconsistency of measurements 

Most of the measurements vary slightly due to repetition, different location of the 

setup or even relocation of the cables. Temperature change due to increased use of 

the actuator and amplifier can affect the resistance and damping of the system. 

Magnetic interaction between the actuator and the measurement devices, as well as 

the cables has been discovered as a factor, which can influence the measurements, 

too. Likewise, noise affects the measurements especially for growing frequencies. 

With an attached load cell, the moving mass slightly increases. Resetting the rubber 

bands often leads to a slightly different actuator stiffness. All these factors are able to 

change the system response to a certain degree. It seems though justified to consider 

the derived actuator model as sufficiently accurate. 
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In this chapter all system parameters could be derived. The earlier derived transfer 

function allows for a good prediction of the real system behavior. It is thus justified 

to consider the system as fully understood and the derived transfer function and 

parameters as accurate enough to be used in further models.  
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6. FEEDFORWARD  

Stability issues require the control of the actuator impedance as a function of the 

attached structure. This way the coupled actuator-structure system reveals the 

desired stable dynamics, which are represented by sufficiently damped poles in the 

frequency domain. Chapter four outlined that an additional feedforward input can 

improve the actuator tracking while maintaining the required impedance.  

In this study, the feedforward is designed to compensate for the static deformation of 

the actuator due to the interaction force. In other words, while the dynamic response 

of the actuator is still affected by the interaction force, the feedforward fully 

compensates for the actuator-structure-interaction in a static state, as schematically 

shown in 4Figure 6.1.  
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Figure 6.1: Full dynamic compensation 
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Figure 6.2: Feedforward compensation for static deformation 
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In displacement control this requires as an additional voltage input equivalent to the 

static displacement error (4Figure 6.2). It is practically impossible to compensate for 

the interaction dynamically, as this would require the prediction of the interaction 

force at the moment the feedforward signal must be applied. The feedforward which 

would compensate completely for the actuator deformation due to the interaction 

force is derived in equation 4(6.1). 

 
rx fx F

fx

rx p p p

ff H F H x

H R Ls R Lsff F F F F
H Bl K Bl K Bl K

= =

+
= = = +

 (6.1) 

This transfer function is improper. The feedforward is therefore designed to 

compensate for the actuator-structure-interaction only statically, by applying only the 

static term / pff RF Bl K=  in equation 4(6.1).  

The following feedforward schemes all compensate for the interaction statically but 

are derived in different ways. This way they differ in regard to the resulting actuator 

impedance, the robustness towards disturbances and their applicability for nonlinear 

structures. In the first scheme the feedforward derives from the reference 

displacement (FFr), in the second one from the applied actuator displacement (FFx), 

and in the third one directly from the interaction force (FFif). In the FFr the actuator 

impedance can only be varied by adjusting the gain. In the FFx or FFif, softening 

takes place even for a constant gain due to the external feedforward loop.  
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6.1. FF derived from reference input (FFr) 

For well-known structure stiffness, the feedforward can be derived from the 

reference input. Under assumed perfect actuator tracking, the interaction force equals 

the product of the reference displacement r and the linear structure stiffness k. This 

requires the additional feedforward input ( / )r pff kR BlK r= . 

open loop TFreference
displacement

Kp

gain

1+Rk/BlKp

feedforward
amplification

displacement

Bl

mL.s  +(mR+cL)s  +(kL+cR+Bl^2)s+kR3 2V

disp

disp

 

Figure 6.3: Simplified reference derived model 

4Figure 6.3 shows the corresponding amplification of the actuator input. This way, the 

feedforward does not change the system dynamics or the poles of the system, 

stiffening and softening of the actuator solely results from adjusting the proportional 

gain. The higher the structure stiffness, the softer the actuator and lower the 

proportional gain must be in order to avoid instability (4Figure 6.4). The low 

impedance consequently results in a higher actuator deformation by the interaction 

force and requires a higher feedforward compensation. 
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Figure 6.4: Required gain adjustment for varying stiffness 

The root locus plot represents the electromagnetic actuator with the derived 

parameters for free motion and a high stiffness of 510 /k N m= , which means a 

stiffness ratio of 10ratioK ≈ . This root locus is the same for the uncompensated 

actuator and for the FFr. It is similar to the shown root locus plot in chapter 3, where 

the problem of the higher stiffness has been shown for nondimensional parameters. 

The required actuator softening has been explained with the instability problems for 

stiff structures. The required actuator stiffening for soft structure has only been 

justified briefly with the actuator phase lag. How the poles’ location affect the phase 

lag will now be solved analytically. 

If the feedforward is derived directly from the reference input, then the phase angle 

equals the phase angle of the original system without feedforward. The closed loop 

transfer function without the feedforward gain was: 

 
3 2 2( )

( ) ( ( ) )
p

cl
p

K BlxH s
r mLs mR cL s kL cR Bl s kR K Bl

= =
+ + + + + + +

 (6.2) 
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With s jω=  4(6.2) can be split into a real and an imaginary part. 

2 2 3

2 2 3

2 2 2 3 2

( )
[ ( ) ] [( ( ) ) ]

[ ( ) ] [( ( ) ) ]
[ ( ) ] [( ( ) ) ]

p
cl

p

p
p

p

K Bl
H j

K Bl kR mR cL j kL Bl cR mL

K Bl kR mR cL j kL Bl cR mL
K Bl

K Bl kR mR cL kL Bl cR mL

ω
ω ω ω

ω ω ω
ω ω ω

= =
+ − + + + + −

+ − + − + + −
=

+ − + + + + −

  (6.3) 

The phase angle then results as 

 
2 3

2

( ( ) )[ ]
( )cl

p

kL Bl cR mLarcTan
K Bl kR mR cL

ω ωθ
ω

+ + −
= −

+ − +
 (6.4) 

Equation 4(6.4) shows that the phase lag increases for lower stiffness and constant 

gain. The increase in the phase lag can only be compensated for by a higher gain. 

Likewise this means that a higher structure stiffness decreases the problematic phase 

lag. The requirement of a softer actuator in response to a stiff structure is thus also in 

accordance with the phase lag and not only justified by the stability bounds. For 

infinite structure stiffness and a finite gain, the phase lag yields towards the limit in 

equation 4(6.5). 

 
3 2

2

( ( ) )[ ] [ ]
( )lim

k p

mL kL Bl cR LarcTan arcTan
K Bl kR mR cL R
ω ω ω

ωθ
→∞

− + +
= = −

+ − +
 (6.5) 

This means that there is always a phase lag present, unless the gain is increased 

infinitely, which would mean actuator instability. The actuator phase lag is therefore 

another challenge in dynamic testing and in particular in hybrid testing. This will be 

discussed in detail in chapter 7. 
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6.1.1. Advantages and disadvantages 

The shown scheme requires an exact knowledge of the system parameters. If the 

structure stiffness is not known well, then an over- or undercompensation of the 

actuator deformation due to the interaction force occurs. The feedforward however 

does not relocate the poles of the system, so that a badly computed feedforward gain 

cannot destabilize the system, but only leads to inaccuracies. A nonlinear stiffness 

would require a constant adjustment of the proportional gain, which is not applicable 

as long as the nonlinear structure stiffness is unknown. The biggest disadvantage is 

however, that the scheme cannot actively increase system damping. The presented 

instability problems due to stiff structures remain, as the model can only avoid that 

the poles shift even closer towards instability than they already are. Equation 4(6.6) 

repeats the earlier derived system impedance. It confirms that a lower proportional 

gain can only partially compensate for an increase in the structure stiffness. 

 
3 2 2( ) ( )ˆ pext

ext

Bl KF Lms mR cL s cR Bl sK k
x R Ls R Ls

+ + + +
= = + +

+ +
 (6.6) 

6.2. FF derived from applied displacement (FFx) 

If the feedforward derives from the applied displacement according to 4Figure 6.5, 

then the system dynamics are actively changed. 4Figure 6.5 models the interaction 

force as the product of the applied displacement x and the structure stiffness k. For a 

linear structure stiffness, the computed and measured force will be equivalent. The 

feedforward is this measured or computed force, divided by the actuator gain in 

direct current. 
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Figure 6.5: Feedforward derived from applied displacement (FFx) 

 

, 2 2

, 3 2 2

2

max, max

1
( ) ( ( ) )

( ) ( ( ) )

( ( ) )( ) ( )

ol ffx

p
cl ffx

p

p ffx p

BlH
s Lms cL mR s cR kL Bl

Bl K
H

Lms cL mR s cR kL Bl s Bl K

cR Bl cL mR k cL mR kRK K
Bl Lm Bl L

=
+ + + + +

=
+ + + + + +

+ + + +
≤ = +

 (6.7) 

The open loop and closed loop transfer functions, as well as the stability limits from 

the proportional gain change correspondingly. Equation 4(6.7) shows a pole at the 

origin and a higher allowable proportional gain in comparison to the uncompensated 

model. Those properties are also illustrated in the root locus plot in 4Figure 6.6. 
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Figure 6.6: RL with FFx 
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Both for free motion and a the high structure stiffness of 510 /k N m= , the complex 

conjugate pairs of poles start from the same distance to the imaginary axis. In 

comparison to the earlier presented scheme this means, that even for extremely high 

structure stiffness, the system poles can keep a safe distance to the imaginary axis. In 

addition to this big advantage however, 4Figure 6.6 also shows a real pole at the 

origin for every structure stiffness. For higher stiffness the system additionally 

becomes more robust towards the proportional gain. This is visible in 4Figure 6.6, as 

the stiff root locus path crosses the imaginary axis for a much higher gain. I.e. the 

root locus is slower for higher structure stiffness and a higher proportional gain is 

allowed. Stiffening and softening no longer requires adjusting the proportional gain. 

The outer feedback loop softens the system automatically. Seraji and Colbaugh [45] 

showed that an outer feedforward loop is able to soften a system effectively even 

though the inner feedback system is very stiff.  

In comparison to the uncompensated model of the FFr, the FFx shows increased 

stability but also a higher phase lag for the same gain. For s jω= , the closed loop 

transfer function in equation 4(6.7) is rewritten as 

, 2 2 3
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2 2 2 3 2
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ω
ω ω ω

ω ω ω
ω ω ω
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 (6.8) 

This shows again that the phase angle in equation 4(6.9) depends on all parameters: 

the actuator characteristics, the proportional gain, the structure stiffness and the 

frequency of the external source. 
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( )ffx

p

kL cR Bl mLarcTan
K Bl mR cL

ω ωθ
ω

+ + −
= −

− +
 (6.9) 

In contrast to equation 4(6.5) the phase lag now increases for growing structure 

stiffness and constant proportional gain. This requires that the proportional gain must 

be increased for higher structure stiffness. 

As this feedforward actively determines the pole location, system uncertainties now 

do not only affect accuracy but also stability. In the following the assumed structure 

stiffness ek  differs from the real stiffness k by an error factor EF, e Fk E k= . 

I.e. the system is overcompensated for 1FE >  and undercompenated for 1FE < . The 

open and closed loop transfer functions then differ from the original. 
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(6.10) 

If 1FE < , then due to the undercompensation less softening takes place and the 

upper limit for the proportional gain is lower than for accurate compensation. 

However the allowable limit will never drop below the limit of the FFr or the 

uncompensated scheme. If the system is overcompensated ( 1FE > ), then there is a 

lower bound for the proportional gain. 

 , , ( 1)
Fp ffx E F

kRK E
Bl

≥ −  (6.11) 

This is reasonable as the real pole moves into the right half plane. A minimum gain 

is needed to stabilize the system, as shown in 4Figure 6.7. Both stability bounds 
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however are very unlikely to happen as long as the structure stiffness is not estimated 

completely wrong.  
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Figure 6.7: RL for Kp with FFx and EF=5 (overcompensation) 

6.2.1. Advantages and disadvantages 

This scheme reveals two great advantages in comparison to the FFr. Any structure 

stiffness can be tested safely, and in addition, impedance control does not necessarily 

require a gain adjustment, but occurs automatically due to the feedforward loop. The 

system impedance for the FFx is shown below. 

3 2 2( ) ( )ˆ
x

pext
FF

ext

Lms mR cL s cR Bl s Bl KF RK k k
x R Ls R Ls

+ + + + +
= = − +

+ +
 (6.12) 

In contrast to the uncompensated system of the FFr, equation 4(6.12) shows an 

additional term which lowers the actuator impedance automatically for a stiffer 

structure.  

Like in the previous feedforward scheme, a miscalculated structure stiffness leads to 

a systematic over- or undercompensation of the actuator deformation due to the 

structure. For undercompensation less softening takes place, and the upper limit for 
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the proportional gain is lower than for accurate compensation. However, the 

allowable limit will never drop below the limit of the FFr or the uncompensated 

scheme. If the system is overcompensated, then there is a required lower bound for 

the proportional gain, which becomes more critical for increasing overcompensation. 

A drawback of this scheme can be that a softer actuator has a higher phase lag. If the 

structure stiffness exceeds the estimated stiffness extremely, then the applied gain 

may be too low to shift the real pole enough into the left half plane, in other words 

too much softening takes place. Consequently, a higher actuator delay would lead to 

negative damping in hybrid testing. This will be discussed in more detail in chapter 

7. 

Both presented feedforward schemes can eliminate the static actuator deformation 

due to the interaction force, but are only valid for linear and known structure 

stiffness. It can therefore be reasonable to eliminate the structure stiffness from the 

feedforward by directly measuring the interaction force at the actuator-structure 

interface.  

6.3. FRF over the whole actuator bandwidth with FF 

All shown feedforward schemes are designed to compensate for the interaction force 

in DC. This design improves the actuator tracking not only in DC as showed the 

improved tracking of the square wave, but over the whole lower frequency range. 

4Figure 6.8 shows the simulated frequency response of the three models for a high 

stiffness of 410 /k N m=  and a gain, which is half the maximum allowable gain in 

free motion. 



 

 

 

73

10-2 10-1 100 101
-20

-10

0

10

f[Hz]

ga
in

 [d
B

]

10-2 10-1 100 101
-2

-1.5

-1

-0.5

0

ph
as

e 
[r

ad
]

NoFF
FFr
FFx

NoFF/FFr
FFx

 

Figure 6.8: Simulated FRF with Kp=0.5Kpmax for high stiffness and all schemes 

The feedforward improves the reference tracking for all frequencies below the cut-

off frequency. As explained above, the FFx is more robust towards the proportional 

gain. For the same applied gain this means, that the time response due to the real 

pole in the FFx scheme is not as quickly damped out as in the FFr or in the 

uncompensated scheme. For increasing frequencies, it therefore shows a higher 

phase lag and worse tracking capabilities. 

6.4. FF derived from interaction force (FFif) 
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Figure 6.9: Block diagram with force derived feedforward 
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4Figure 6.9 shows the block diagram, where the feedforward is derived directly from 

the measured interaction force. If the structure stiffness is linear, then the dynamics 

of this scheme are equivalent to the FFx. If the load cell is well calibrated and the 

actuator properties well-known, then an over- or undercompensation due to 

feedforward is impossible. Moreover this scheme can be applied, if the structure 

stiffness is nonlinear or even unknown.  

Another advantage is that this scheme partially compensates for force disturbances at 

the actuator-structure interface which are not due to the structure stiffness. The 

actuator displacement of the compensated model in 4Figure 6.9 is 

 3 2 2( ) ( ( ) )
p

p

Bl K r LsF
x

Lms cL mR s cR Bl s Bl K
−

=
+ + + + +

 (6.13) 

Even though the static actuator-structure-interaction is compensated for, dynamically 

the interaction force still causes the following actuator deformation. 

 3 2 2( ) ( )F
p

Lsx F
Lms mR cL s cR Bl s Bl K

=
+ + + + +

 (6.14) 
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Figure 6.10: Deformation due to force disturbance 
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Figure 6.11: Relative error compensation by FF 

Figure 6.10 simulates the actuator deformation due to a unit force for the original, 

uncompensated system, and the system with force derived feedforward for the earlier 

presented actuator parameters, and a proportional gain of half the maximum 

allowable gain. The feedforward significantly improves the results, particularly for 

lower frequencies. The relative compensation by feedforward is independent of the 

gain and plotted in 4Figure 6.11. For both models, the system is less sensitive to 

disturbances beyond the cut-off frequency of the actuator. This is due to the actuator 

dynamics, which act like a low pass filter.  

6.5. Comparison of the different schemes 

In the following, the differences of the shown feedforward schemes are summarized 

again. If the feedforward is derived from the reference input, then the system is not 

changed in regard to stability and phase lag. Deriving the feedforward from the 

applied displacement or the interaction force adjusts the actuator impedance to a 

varying structure stiffness. For stiff structures the advantage of the actuator softening 



 

 

 

76

and correspondingly the higher system damping can be seen in both more stability 

but also a higher phase lag. 

FFx and FFif Uncompensated system and FFr 

Initial location of complex conjugate pair 
of poles shifted into the LHP. 

Initial location of complex conjugate 
pair of poles unchanged. 

Initial distance of poles to imaginary axis 
(~settling time) is independent of 

structure stiffness. 

Distance decreases with growing 
structure stiffness. 

High stability margin also for high 
stiffness 

Low stability margin for high 
stiffness. 

Complex conjugate pair is only dominant 
for high gains. 

For high gains OR/AND high 
stiffness the complex conjugate pair 

is always dominant. 

Gain reduction dramatically increases 
the phase lag. 

Gain reduction only problematic for 
low structure stiffness. 

The outer feedforward loop softens the 
system automatically. 

The outer feedforward loop cannot 
soften the system, a gain reduction is 

therefore necessary. 

6.6. Test results 

The different feedforward schemes will now be applied in laboratory tests. In order 

to model a structure stiffness, two L-angles are fixed to the steel plate (4Figure 6.12). 

A brass bar is then clamped horizontally, as shown schematically in 4Figure 6.13. 

This setup is chosen, because no bending will be applied to the load cell nor friction 

will introduce noise into the system when the beam is deformed. 
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Figure 6.12: Setup with modeled stiffness 

 

Figure 6.13: Equivalent structural model 
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Figure 6.14: Actuator-structure test setup 

4Figure 6.14 and 4Figure 6.15 show that the load cell is fixed to the end of the actuator 

and is pinned to the center of the brass bar. The modeled stiffness of the brass bar is 

computed based on the assumed and measured properties of the bar and is likewise 

measured with the LVDT and load cell. It is highly nonlinear as it stiffens up for 

higher applied displacement and due to the way it is clamped also shows some 
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difference between tension and compression. All tests in this and the following 

chapter are performed with a 0.032 inches thick brass bar. Its stiffness has been 

measured and is represented with an approximation function in 4Figure 6.16. 
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Figure 6.15: Actuator-structure attachment 
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Figure 6.16: Nonlinear stiffness of brass bar 

This stiffness sums up with the actuator rubber bands to the overall stiffness which 

finally resists the actuator movement. In the following example, the FFr and FFx will 

hence be compared. The maximum gains for the derived parameters are: 
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 (6.15) 

6.6.1. Experiment 1 

In the first experiment, the frequency response over the whole actuator bandwidth is 

measured for the uncompensated model and the feedforward compensated schemes, 

applying a relatively high stiffness (ρ > 0.5) and a gain of max0.8p pK K= . A multi-

sine input voltage with low amplitude is applied to decrease the effect of the 

structure nonlinearity.  
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Figure 6.17: Improved tracking by FF over the whole actuator bandwidth 
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4Figure 6.17 shows that both feedforward schemes improve the actuator tracking over 

the whole actuator bandwidth. However, it should be noted that the FFif leads to a 

higher phase lag due to the softening of the actuator. 

6.6.2. Experiment 2 

In the following example the actuator is inhibited by the structure stiffness from 

4Figure 6.16 in compression, while in tension only the inherent rubber bands affect its 

movement. This experimental setup is schematically shown in 4Figure 6.18. This 

time, the load cell is not fixed to the brass bar. For negative displacement the 

actuator is not in contact with the brass bar and only experiences the stiffness of the 

rubber bands. For positive displacement the brass bar resists the movement of the 

actuator in addition to the rubber bands. 

 

Figure 6.18: Actuator acting on nonlinear structure 

For the commanded square wave the actuator approximately faces the stiffness 

k=5670N/m in compression and k=210N/m in tension. 4Figure 6.19 shows that for the 

chosen gain the actuator cannot track the signal in neither one of the two directions. 

While in tension the low stiffness only results in a low static error, in compression 

the large interaction force results in a large static error.  
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Figure 6.19: Bad tracking for no FF 

This DC error is not present anymore, if one of the two feedforward schemes is 

applied. 4Figure 6.21 shows both the advantages and disadvantages of the FFr. The 

feedforward eliminates the DC error, but after a few cycles the system goes unstable. 

Even though stable tracking occurred for the first cycles, some system uncertainty or 

disturbance destabilized the system. This outlines the big advantage of the 

displacement derived scheme (FFx). The feedforward loop increases the system 

damping, leading to a stable response with lower overshoot, as visible in 4Figure 6.20.  
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Figure 6.20: Accurate and stable tracking with FFx 
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Figure 6.21: Instability of FFr 

This example illustrates that only the FFx scheme, or equivalently the FFif, provide 

for enough damping for high structure stiffness. 

The previous example showed that the FFx successfully compensates for the 

actuator-structure-interaction in DC. Additionally, the external feedforward loop 

showed a stabilizing effect by controlling the actuator impedance in respond to the 

structure. Earlier it has been mentioned that for known structure stiffness and no 

further force disturbance, the FFx and FFif are equivalent schemes. The differences 

become obvious when the force disturbance at the actuator-structure interface cannot 

be computed anymore accurately. This happens for instance for a nonlinear or 

unknown structure stiffness or for other force disturbances, which are not a function 

of the applied actuator displacement.  

6.6.3. Experiment 3 

In the following experiment the tested structure is a magnetorheological (MR) 

friction damper [30] ( 4Figure 6.22 a) and b)), which is only slightly velocity 
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dependent and resists the actuator movement with an approximately constant force 

of 9N.  
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Figure 6.22: MR friction damper attached to actuator 
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Figure 6.23: measured FRF with friction damper 

The measured FRF for the uncompensated and feedforward compensated systems in 

comparison to the actuator movement in free motion (no damper attached) are shown 

in 4Figure 6.23. The FRF with feedforward is almost the same as the FRF of the 

actuator in free motion, indicating that feedforward is effective in compensating for 
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actuator-structure-interaction. The resonance peak of the compensated frequency 

response occurs for a slightly lower frequency than that of the actuator in free 

motion, because the MR friction damper has some moving mass. The improved 

actuator tracking is now shown in the time domain for a sine wave input and a 

frequency of 0.1f Hz= . 4Figure 6.24 shows that the damper resistance leads to a bad 

tracking, which for this low frequency can be improved significantly by feedforward. 
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Figure 6.24: Improved tracking with FF and magnetorheological friction damper 

6.7. Comparison between FF and PID controller 
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Figure 6.25: PID control 

 

Figure 6.26: PID controller 

For PID feedback control, the input signal to the actuator is the displacement error, 

hence the difference between the reference displacement r and the applied 



 

 

 

85

displacement x, in series with a PID controller (4Figure 6.25). A PID controller 

consists of a proportional, an integral and a derivative part (4Figure 6.26). The 

proportional gain Kp controls the natural frequency. It decreases the rise time and 

reduces the error response due to disturbances. However it has been shown that the 

proportional gain cannot eliminate the DC error and leads to instability of the system 

if the critical limit is exceeded. 

The integral gain KI reduces the DC error or can even eliminate it. Like the 

proportional gain, however, it increases the overshoot of the system response and in 

the limit leads to instability. The derivative gain Kd can increase the damping. This 

way the overshoot decreases and better stability is achieved. The effect of the 

derivative control term depends on the rate of change of the error. This is difficult to 

design so that the derivate controller is often not used. Another significant 

disadvantage is, that noise in the system can be amplified by a high derivative gain. 
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Figure 6.27: Simulated FRF for feedforward and integral control 
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4Figure 6.27 shows the simulated frequency response, using an integral controller 

with the magnitude Ki of half the maximum allowable integral gain. Like the 

feedforward models, the integral controller can likewise compensate for the DC error 

for lower frequencies. However there are important differences between the 

feedforward and integral controller in regard to stability, which become increasingly 

important for higher structure stiffness. While feedforward schemes (FFx of FFif) 

have been shown able to increase the system damping by shifting the complex 

conjugate pair of poles into the left half plane, the integral controller adds another 

real pole into the system, which cannot increase the system stability. 4Figure 6.28 

shows the root locus for increasing integral gain for the same system parameters as 

applied before, i.e. the same proportional gain and structure stiffness. 

The integral controller introduces another real pole and cannot move the complex 

conjugate pair of poles away from the imaginary axis. In contrary, increasing the 

integral gain shifts the complex conjugate pair of poles closer to the imaginary axis 

and decreases the system damping even more.  
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Figure 6.28: Root locus for increasing integral gain 
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Figure 6.29: Root locus for growing derivative gai 

The derivative controller adds another zero into the system and can actively increase 

the system damping. 4Figure 6.29 shows that for the same parameters the derivative 

gain can move the complex conjugate pair of poles further away from the imaginary 

axis. Simultaneously however, the real pole shifts towards the right and becomes 

dominant very quickly leading to a slow response and large phase lag. 4Figure 6.29 

shows the location where for this specific case the poles cross. In addition, the 

derivative controller reveals further disadvantages and is therefore not used 

frequently. For example, some system noise can be amplified and introduce even 

higher inaccuracies to the system.  

Summarizing the effect of a PID controller, it introduces another pole and two other 

zeros to the system (equation 4(6.16)). A very good design of all parameters can 

improve both the stability and tracking capability of an actuator. The disadvantage is 

however, that a good design of the gains is only valid for a specific structure. As the 

control system does not adjust to changing structure stiffness, the basic law of 

impedance control is broken, and simultaneous accuracy and stability are not 

possible anymore.  
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 (6.16) 

6.8. Actuator resistance of higher order dynamics 

It has been shown that the force derived feedforward can successfully compensate 

for interaction forces due to springs or force disturbances such as friction. In the 

following it will be analyzed if this scheme is also applicable if a dynamic system is 

attached to the actuator. If the actuator is attached to a shake table or damper, then 

the system poles will be changed in another way than by a spring. The mass, damper 

and stiffness of the actuator (m, c, k) are distinguished from the mass, damping and 

stiffness (M, C, K) of the test structure in 4Figure 6.30. 
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Figure 6.30: Actuator resisted by spring-mass-dashpot 

6.8.1. Uncompensated system dynamics 

If no feedforward is applied, then the attached mass, damper and stiffness have the 

same effect on the system dynamics than the internal properties of the actuator, i.e. 

the moving mass, mechanical and eddy current damping and the stiffness of the 

rubber bands. This way the corresponding properties add up in the open and closed 

loop transfer function.  
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 (6.17) 

The maximum proportional gain increases due to the applied structure stiffness K 

and particularly due to the damper C. The mass M however is shown as a lowering 

factor.  
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Figure 6.31: RL for different attached masses 

The root locus in 4Figure 6.31 basically shows a decrease in the eigenfrequency of the 

system. The system response gets slower and the settling time increases. For infinite 

high mass, the gain converges towards the limit in equation 4(6.18). 
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Increased damping shifts the complex conjugate pole into the LHP and increases the 

dominance of the real pole (4Figure 6.32).  
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Figure 6.32: RL for different attached dampers 

6.8.2. Compensated system dynamics 

It is now of interest how the shown force derived feedforward scheme performs with 

an attached dynamic system. The interaction force is now modeled as a function of 

not only the actuator displacement but also the velocity and mass. 
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 (6.19) 

Like in the uncompensated model the stiffness and damper allow for a higher gain, 

while the mass decreases it. In fact, if no additional damping or stiffness is applied, 

then there is a maximum allowable mass.  

 2 2 2 2 2( ) /( )M Bl cL Bl mR ckL cmR LRc kLR< + + + +  (6.20) 
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Figure 6.33: RL with FF for varying attached masses 

The increasing mass lowers the stability bounds and even leads to instability quickly. 

This concludes that the force derived feedforward is not applicable for interaction 

forces due to inertia. This is different for an applied damper. The allowable gain is 

increased and more stability achieved. 

 
2 2 2 2 2 2

( )p
Bl cL Bl mR ckL cmR LRc kL cR BlK C

Bl L m Bl m M
+ + + + + +

< +
+

 (6.21) 

-80 -70 -60 -50 -40 -30 -20 -10 0 10
-80

-60

-40

-20

0

20

40

60

80

Real Axis

Im
ag

in
ar

y 
A

xi
s

high damper 

low damper 

 
Figure 6.34: RL with FF for varying attached dampers 

4Figure 6.34 shows that the feedforward shifts the poles into the LHP and increases 

the system damping even further. This is not necessarily desired as already the 

uncompensated model has increased system damping. Impedance control requires 

that the soft structure, here the damper, requires a stiff actuator. However the shown 
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root locus becomes more sensitive for the gain as well. This means that for the 

applied gain the poles are much closer to the imaginary axis than without 

feedforward. 

It thus can be summarized that feedforward should not be used to compensate for 

interaction forces due to any inertia force. It is however useful to compensate for a 

damper force. The system is more stable than in free motion for the same gain and 

more accurate than the uncompensated system with the attached damper. However, 

better control design requires the adjustment of the proportional gain to the attached 

damper. This rule is valid for the mass, damper and structure in general.  

6.9. Summary 

So far it has been explained that the actuator must deform in response to the 

interaction force. This way the actuator has a certain impedance, which is required to 

adjust to a changing structure stiffness. Feedforward has been shown as a tool to 

compensate for the actuator deformation effectively, by likewise maintaining its 

required impedance. A stiffer structure requires a softer actuator, which means that it 

deforms more due to the interaction force and a higher feedforward input is needed. 

This softening is equivalent to an increase in the actuator damping and stability. The 

disadvantage of the actuator softening has been shown in the higher phase lag 

especially for higher frequencies. In the root locus plot this could be seen by a more 

dominant real pole. The following chapter will discuss the applicability of 

feedforward in hybrid testing. 
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7. HYBRID MODEL 

The actuator must deform in response to the interaction force. This way the actuator 

has a certain impedance, which is required to adjust to a changing structure stiffness. 

Feedforward has been shown as a tool to compensate for the actuator deformation, 

by likewise maintaining the requirement of the actuator impedance. In comparison to 

the displacement derived scheme, the force derived feedforward FFif is applicable 

also for nonlinear or unknown structure stiffness. The reason is, that the feedforward 

loop softens the actuator in response to a higher structure stiffness and vice versa, 

even if the gain is kept constant. Simultaneously however, this can lead to a higher 

actuator phase lag, if the structure stiffness is highly underestimated and no gain 

adjustment applied. This was visible in the root locus plot where the higher stiffness 

led to more robustness towards the gain and consequently resulted in a more 

dominant real pole for the same gain.  

In hybrid testing, the actuator delay, which results from the phase lag and other time 

delays in the system, has the effect of negative damping in the hybrid loop. For small 

delays, this negative damping can be approximated as the product of the structure 

stiffness k and the actuator delay tδ  ( eqc k tδ= − ) [53]. An underestimation of the 

structure stiffness therefore is particularly critical as the higher actuator phase lag in 

combination with the high structure stiffness then results in a high negative damping. 

It is therefore required to compensate for the possible actuator delay in particular for 

high structure stiffness. Prediction schemes [18, 37], numerical damping [16, 51, 
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53], as well as the [18]I-modification scheme [10] can reduce the harmful effect of 

the actuator delay. In the following analysis and laboratory tests, the I-modification 

scheme is shown capable to compensate for the actuator delay effectively, even 

though the structure stiffness is not known well. 

7.1. Hybrid model 
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Figure 7.1: Chosen hybrid model 

The simulations and tests will be performed for the following chosen system in 

4Figure 7.1. In the hybrid simulation, the spring 1k  is modeled physically, while the 

rest of the structure is modeled numerically. The differential equation (7.1) shows, 

that the effect of the spring 1k  can be grouped with the external input and separated 

from the rest of the structure. In other words, the physical substructure is eliminated 

in the numerical substructure. Instead, the interaction force is taken as an external 

input. The accuracy of this force feedback depends on the tracking capabilities of the 

actuator. 
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 (7.1) 

where { } { }1 2 3 1 2 3 1 2 3
Tx u u u u u u u u u=

G �� �� �� � � � . 

7.2. Actuator delay 

In the previous chapter, the actuator phase lag has been derived for each feedforward 

scheme. It has been mentioned above, that the actuator delay is an inherent problem 

in hybrid testing as it introduces energy into the hybrid loop and can cause 

instability.  

Assuming a sine input, the energy added into the system in one period T for a 

continuous system is the integral of the product of the feedback force with the 

correct (not delayed) displacement [18]. 

2
0 0 0 0

0 0 0

1( ) sin( ) cos( ) 2
2

T T T

del
dx dxE qdx q dt kx dt kA t t A t dt kA t
dt dt

δ ω ω δ ω ω πω δ= = = = − =∫ ∫ ∫ ∫v
 (7.2) 

where 0, , ,q k A ω  are the force over a cycle, the structure stiffness, the input and the 

natural frequency of the sine input correspondingly. For small delays, this energy 

increase can be approximated by the equivalent negative damping eqc k tδ= −  [53]. 

The following tests and simulations apply Newmark’s constant average acceleration 

method, as it is unconditionally stable but has no numerical dissipation. This means 
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that if no damping is applied for the structure ( 1 2 3 0c c c= = = ), then the least 

actuator delay will lead to instability.  

While the upper allowable limit for the proportional gain does not depend on the 

hybrid model, but only on the actuator properties, the lower limit depends on the 

damping in the numerical substructure. In the previous chapter, higher actuator 

stability was reached by softening the actuator. In the hybrid loop this can now lead 

to the trade-off, that this softer and consequently slower actuator increases the 

negative damping. This means that depending on the numerical substructure and the 

stiffness of the physical substructure there is also a lower limit for the proportional 

gain.  

The lower allowable limit cannot be computed accurately as the actuator in reality is 

a continuous system and the numerical scheme a discrete system. In the real 

laboratory test it is necessary to convert the digital signal into a continuous signal, 

before it is sent to the actuator. Likewise, the continuously measured actuator 

displacement and the interaction force are converted into a digital signal, before they 

reach the numerical model. An approximation can be computed if both systems are 

simulated as either discrete or continuous.  

In the following, the three spring-mass-dashpots in 4Figure 7.1 are modeled as 

equivalent. If the numerical substructure is modeled as a continuous system and the 

physical substructure is assumed as linear, then the equilibrium of the hybrid system 

results in equation 4(7.3), where r is the actuator command and clH  the closed loop 

actuator transfer function. U is the external force input to the numerical substructure 
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which results from both the ground acceleration and the load cell measurement, 

which is modeled as the applied actuator displacement multiplied with the structure 

stiffness. This implicit equation will be solved in the later examples for the 

corresponding parameters in order to estimate the lower allowable gain. 

 

[ ]
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��

 (7.3) 

7.3. Simulink model 

The results of the hybrid model and the allowable stability limits for the actuator are 

first simulated with the previously discussed simulink models. In comparison to the 

real-time system, the simulink model is not affected by noise and approximates the 

actuator with the discretized transfer function.  

7.3.1. Discretization 

The algorithms solve for the displacements in discrete time steps. The actuator 

transfer function however has been shown as a continuous system. In the hybrid 

simulation the actuator transfer function is hence approximated as a discrete system. 

A bilinear approximation based on the trapezoidal rule of discrete equivalents, also 

known as Tustin’s method [14], converts the continuous transfer function into the 

discrete transfer function for: 
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 2 1
1

zs
h z

−
→

+
 (7.4) 

The earlier shown continuous transfer function then yields the discrete transfer 

function 

 
3 3 2 3 2

1 2 3 4
3 2 3 2
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with  
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 (7.6) 

The DC for the continuous system is found for 0s = , for the discrete system this 

corresponds to 1z = . The gain of the two feedforward schemes has been shown as 

identical before. Equations 4(7.7) and 4(7.8) solve for the desired feedforward gains for 

the reference derived ( rff ) and displacement derived ( xff ) schemes again in order to 

compensate for the static actuator-structure interaction. As shown, they equal the 

gains of the continuous system. 

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

1 1r cl r r
p

a a a a b b b b kRff H ff ff
b b b b a a a a Bl K
+ + + + + +

= = = = +
+ + + + + +

 (7.7) 

 1 2 3 4

1 2 3 4

11 1 1
1

cl
x

x cl cl p

H b b b b kRff
ff H H a a a a Bl K

+ + +
= = − = − =

− + + +
 (7.8) 
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The actuator function is then integrated into the hybrid system as a discrete transfer 

function, as illustrated in 4Figure 7.2.  

 

Figure 7.2: Hybrid model including discretized actuator model 

 

7.3.2. Hybrid test for nonlinear structure with FFr 

For the FFr, impedance control requires an adjustment of the proportional gain to 

changing structure stiffness. For a nonlinear stiffness this means, that for every time 

step the proportional and feedforward gains pK  and rff  are recalculated. The 

structure stiffness is modeled as a function of the applied displacement and highly 

nonlinear. The more the structure is deformed, the more it stiffens up, such that 

1(1 2 | |)subK k x= + , where x is the actuator displacement. In response to the 

computed gains, the parameters ia  and ib  in equation 4(7.6) are then computed 

dynamically, too. The discrete transfer function block can therefore not be applied 

anymore. Instead, the actuator response is also modeled numerically with an S-

function, which replaces the discrete transfer function block in 4Figure 7.2. In order to 
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solve for the actuator displacement numerically as a function of the previous 

displacements and varying parameters, the transfer function is rearranged. 

 

3 2 1 2
1 2 3 4 1 2 3 4

, 3 2 1 2
1 2 3 4 1 2 3 4

1 2 3 1 2 3
1 2 3 4 1 2 3 4
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− −
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+ + + = + + +

−  (0.1) 

Applying the backward-difference discretization [19], the new displacement can be 

computed out of the three previously applied and commanded displacements and the 

actual commanded displacement (reference input). 
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a
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b
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 (0.2) 

In the following test, the initial gain is designed adequately for the initial stiffness 

, by applying 80%  of the allowable limit. 1k

 
2 2

1
, 1 max, 1

( ) ( ) ( ( ))
0.8 0.8p k p k

Bl cL mR c k L R cL mR
K K

Bl Lm

+ + + +
= =  (0.3) 

The gain will be adjusted to the nonlinear stiffness so that the system impedance in 

equation (7.12) remains constant in DC. 

 
2 2( ) ( )ˆ pext

ext

Bl KF Lms mR cL s cR Bl
K s

x R Ls R

+ + + +
= = + +

+ +
k

Ls
 (0.4) 

If the structure stiffness is highly increased, then the impedance cannot be 

maintained. As explained in the earlier chapter, the FFr is not adequate anymore once  
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the structure stiffness gets too high. If the structure stiffness remains below the 

critical limit, then the stiffness of the coupled system can be maintained by lowering 

the gain as in equation 4(7.13). 

 1 1( )p p
RK K k k
Bl

= − −  (7.13) 

4Figure 7.3 simulates the nonlinear test for a sine wave ground acceleration, plotting 

the structure stiffness, proportional gain and feedforward gain as a function of the 

applied displacement. 
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Figure 7.3: FFr for nonlinear stiffness 

Good actuator tracking is achieved by the continuous adjusting of the proportional 

gain and the feedforward gain. The simulation illustrates how accurate tracking and 

impedance control can be combined by using the FFr. Again, however, this requires 

that the nonlinear structure stiffness is known well and does not exceed certain 

limits. 
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7.3.3. FFx 
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Figure 7.4: Hybrid model including FFx 

The model in 4Figure 7.4 models the response for the FFx. As explained earlier, 

impedance control takes place due to the external feedforward loop even though the 

gain is kept constant. Again, however, the structure stiffness must be known in order 

to model the correct feedforward input. This is not necessary if the force derived 

feedforward is applied. As the FFx and FFif are equivalent for linear structure 

stiffness, the model in 4Figure 7.4 is also used as a comparison to the laboratory tests 

using force derived feedforward.  

7.4. Labview real-time model 

Finally, the laboratory tests are performed using the real-time target machine. 4Figure 

7.5 relates the functionalities of the hybrid test setup to the corresponding 

components in the simulink model. A computational time step of 1 ms is chosen. In 

order to guarantee a smooth computation, only time critical computations are 

performed on the real-time target machine. The output signals are sent over the 

network to the host machine, where the non time critical actions, such as monitoring 

and processing of the output, are performed.  
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Figure 7.5: Deployment diagram for hybrid simulation 

 

Figure 7.6: Block diagram of hybrid tests 

4Figure 7.6 represents the complete block diagram for the hybrid test. The top loop is 

time critical and performs every millisecond. It reads from and writes to the physical 
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device, processes the signal input and computational model, and writes all the output 

to a buffer. The bottom loop is not time critical and performs only as long as the time 

critical loop performs perfectly. It reads the data from the buffer, processes it and 

sends it over the network to the host machine. 4Figure 7.7 shows the tasks which are 

then performed on the host machine. The information is received over the network 

and is then processed, monitored and written to an output file. 

 

Figure 7.7: Block diagram on the host machine 

7.5. Test results 

The following illustrates the effect of the actuator delay both in the time and 

frequency domain. The first paragraph shows the simulated and modeled time 

response of four different examples. The upper and lower allowable gains are 

computed, simulated and measured for a chosen low frequency ground acceleration. 

Then, the effect of the actuator delay on a hybrid test is presented with the FRF over 

the whole actuator bandwidth. Each time the three masses, dampers and springs are 

chosen as identical. Therefore 1 2 3k k k k= = =  must match the stiffness of the rubber 



 

 

 

105

bands and the corresponding brass bar. The masses and dampers are chosen 

reasonably as a function of the stiffness.  

7.5.1. Experiment 1 

In the first tests the upper and lower limits for the proportional gain are computed, 

simulated and measured. All test results are performed for a ground acceleration of a 

1 Hz sine wave and represent the gain limits for the uncompensated scheme and all 

feedforward schemes. The actuator displacements are kept low in order to 

approximate a linear structure stiffness. Nevertheless, this approximation is one 

possible reason, why the measured and simulated results sometimes vary. The 

maximum gains for the reference and displacement derived schemes are repeated 

below.  

 

2 2 2

2( )( )

pffr
v v

pffx
v

Bl R Bl L kL mR LRcK c
L convG Bl LmconvG

cL mR cR Bl kLK
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+ + +
< +

+ + +
≤

 (7.14) 

They are also verified in the root locus plots, which are presented for every example. 

Note that the root locus assumes a continuous numerical substructure and a linear 

physical substructure. The simulated gain limits result from trial and error from the 

simulink models. In comparison to the calculated limits of the continuous system, 

these block diagrams solve for the limits in the discretized system. Those 

approximations are then compared with the measured results.  
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Table 7-1: Computed, simulated and measured stability bounds for the proportional gain 

Summarizing the table, the simulated results are very close for the continuous and 

discrete model. Despite of the structure’s nonlinearity they are also relatively close 

to the measurements. The maximum gain in the measurement is usually a bit higher 

for the sine wave, the lower bound for the gain could be verified with better 

accuracy. With the load cell, instability occurs quicker both for lower and higher 

gains. This is reasonable as it is very noisy and captures the structure nonlinearity.  

The above hybrid models were all sufficiently damped to achieve a stable test for the 

allowable range of the proportional gain. In reality however, this damping might be 

significantly lower. Moreover the tests above were only applied for one single 

frequency. In the following, the effect of the actuator delay will be examined over 

the whole actuator bandwidth.  
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7.5.2. Experiment 2 

In order to show the effect of the actuator delay over the whole frequency range, the 

model in 4Figure 7.1 is tested for three equivalent spring-mass-dashpot systems with 

20.02 /m lb s in=  and 23 /k lb in= . The eigenfrequencies of the model are all within 

the actuator bandwidth, i.e. 1 2.4f Hz= , 2 6.7f Hz=  and 3 9.7f Hz= . In the first test 

a damping of 0.6 /c lb s in=  is applied. This corresponds to 20%ζ =  damping ratio 

of the first eigenmode. 4Figure 7.8 models the actuator displacement in response to 

the multi-sine input representing the normalized ground acceleration. 
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Figure 7.8: Increased resonance peak due to actuator delay 

In comparison to the simulated response, where perfect actuator tracking is assumed, 

the other models show an increased resonance peak which results from the negative 

damping due to the actuator delay. The FFx and FFif show an even higher peak than 

the FFr due to the softer and slower actuator. Models with lower damping therefore 

need compensation for the actuator delay. In the following the I-modification scheme 
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[10] will be applied to stabilize a low damped system with 0.1 /c lb s in= , which 

yields 1 3%ζ =  damping ratio of the first eigenmode, and 2 19%ζ =  and 3 13%ζ =  

for the second and third eigenmode.  

7.5.3. Experiment 3 

7.5.3.1. Hybrid simulation algorithm with I-modification 
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Figure 7.9: Hybrid loop with I-modification scheme 

The hybrid simulation algorithm is shown schematically in 5Figure 7.9. Of particular 

note in this figure is the I-modification scheme. The I-modification alters the force 

feedback to the numerical substructure by comparing the commanded displacement 

r , and applied displacement x  and multiplies this displacement error with an 

estimate of the initial structure stiffness, IK . 

 ( )IF K r xΔ = −  (7.15) 

Ideally, if the I-modification used the exact structure stiffness, then the actuator 

delay would be completely compensated for. However, since the structure could be 

nonlinear, and its stiffness could vary during the simulation, KI cannot exactly equal 
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the structure stiffness. Therefore, an over- or under-compensation of the actuator 

delay could occur. Both cases can run the hybrid simulation unstable. Therefore, a 

procedure for the analysis of the stability of the hybrid simulation algorithm with I-

modification is discussed. 

7.5.3.2. Stability analysis of the I-modification scheme 

The stability analysis is carried out by linearizing the physical substructure model, 

and using the model of the actuator described in section 3. The proportional gain Kp 

is designed for good tracking in free motion. Considering the entire hybrid 

simulation system as a cascaded close-loop system, from 5Figure 7.9, the transfer 

function for the entire hybrid system can be obtained. 5Figure 7.10 shows the root 

locus plot for this transfer function for increasing I-modification stiffness.  
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Figure 7.10: Root locus for I-modification stiffness 

The plot shows that for the low damping of the hybrid model, I-modification is 

necessary in order to shift the unstable poles into the left half plane. However there is 

also an upper limit for the I-modification stiffness, when a complex conjugate pair of 
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poles shifts into the right half plane. The lower and upper limits are shown in 5Figure 

7.10 and were also confirmed experimentally. For non-realtime simulation, where 

the actuator dynamics need not be considered, it has been remarked by Combescure 

and Pegon [10] that using an I-modification that is more positive than the actual 

stiffness guarantees stability. However, the above analysis shows that for realtime 

simulation, where actuator dynamics are significant, there is also an upper bound for 

the I-modification. This should be considered when designing a hybrid simulation 

controller. 

In the following hybrid simulation, the Newmark’s constant average acceleration 

algorithm is used for the numerical substructure, and an I-modification factor of KI = 

28 lb/in = 4900 N/m is applied, which is within the stability bounds established 

above. First, a multisine with randomized phase is used as the ground acceleration 

input, and the frequency response from the ground acceleration to the displacement 

of the first mass is measured. As shown in 5Figure 7.11 and Figure 7.12, the 

frequency response obtained from the hybrid simulation agrees closely with that 

obtained from a purely numerical solution. The discrepancy is somewhat pronounced 

at the third resonance, where the measurement is noise dominated. This illustrates 

that feedforward in combination with the I-modification scheme allows for stable 

and accurate hybrid testing even for structures of very high and nonlinear stiffness. 
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Figure 7.11: FRF from ground acceleration to actuator displacement 
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Figure 7.12: FRF in logarithmic scale 

Next, the hybrid simulation is carried out with the El Centro 1940 earthquake 

acceleration record as the input. 5Figure 7.13 shows the reference and applied 

displacement of the actuator during the hybrid simulation. Again it is seen that good 

tracking is achieved, even though a high nonlinear structure stiffness is applied and 

the gain is maintained, which has been originally designed for the actuator in free 

motion.  
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Figure 7.13: Good tracking with forced derived feedforward 

7.6. Summary 

Stability in simple closed loop testing is achieved even though a phase lag is present. 

Hybrid testing introduces a second stability bound for the proportional gain, as 

actuator delay leads to negative damping and eventually instability in the hybrid 

model. The force derived feedforward scheme in combination with the I-

modification scheme is finally shown as a relatively simple but very powerful tool to 

run hybrid tests both accurately and stable, even though the structure stiffness is not 

known well or nonlinear. As a general design rule for structures of nonlinear or 

unknown stiffness, the following three steps are recommended. 

1. Design the proportional gain for the lowest known structure stiffness, or for free 

motion if the stiffness is completely unknown. 

2. Apply the FFif. 

3. Apply the I-modification scheme if the structure stiffness can be estimated well. 
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By designing the actuator gain for the lowest known stiffness, actuator instability is 

impossible to happen. The I-modification scheme will increase the accuracy of the 

hybrid test and compensate for the negative damping due to the actuator delay. 

Depending on the hybrid structure however, overcompensation might also lead to 

instability. Its application should therefore not be applied if the structure stiffness is 

completely unknown.  
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8. CONCLUSION 

Accurate and stable actuator tracking is only possible if the actuator-structure-

interaction is integrated into the control design. This is possible by controlling the 

actuator impedance, which requires that the actuator deforms in response to the 

actuator-structure-interaction force. In order to maintain the desired impedance of 

the coupled actuator-structure system, the actuator impedance must adjust to a 

varying structure stiffness. 

Feedforward control has been shown as a tool to compensate for actuator-structure-

interaction while maintaining the required actuator impedance. The FFif is applicable 

even for nonlinear or unknown structure stiffness as it automatically adjusts the 

actuator impedance to a varying structure stiffness. 

Finally, feedforward was applied to hybrid testing. This introduced a second stability 

bound, as actuator delay has the effect of negative damping on hybrid system and 

eventually leads to instability. The I-modification scheme has been shown as a 

possible tool to compensate for the actuator delay. As a general design rule for 

structures of nonlinear or unknown stiffness, the following three steps are 

recommended. 

1. Design the proportional gain for the lowest known structure stiffness, or for free 

motion if the stiffness is completely unknown. 

2. Apply the force derived feedforward. 

3. Apply the I-modification scheme if the structure stiffness can be estimated well. 
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The feedforward input was designed to compensate for the actuator-structure-

interaction statically. With this approach the system impedance could be controlled 

and stability guaranteed. In regard to accurate actuator tracking however, the FFif 

only compensates well for force disturbances in the low frequency range, but not in 

the range of the actuator resonance frequency. In addition to that, all shown 

feedforward schemes require a close knowledge of the actuator properties.  

As a further research the aim should be, to build an actuator-control system which 

adjusts the gain and feedforward according to unknown system parameters both in 

regard to the structure stiffness and the actuator properties. Several of those control 

schemes have been applied in robotic systems and are presented in appendix B. In 

particular the learning impedance control and model based prediction are able to 

converge the control system towards a target impedance by continuously estimating 

and adjusting system parameters. Those models are mostly insensitive to system 

uncertainties but require an extensive experience in control system analysis. A full 

compensation of the actuator-structure-interaction by feedforward however will 

never be possible without the prediction of the interaction force. Different estimation 

and adapting schemes could further compensate for the interaction.  

Summarizing, the stability problem of the actuator due to stiff structures could be 

solved. The force derived feedforward scheme is able to track a transient input stable 

and accurately even for structures of high, nonlinear and unknown stiffness. The 

improved actuator tracking will increase accuracy and stability also for hybrid 

testing. 
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A. APPENDIX – Algorithms in hybrid testing 

Chapter 2 briefly reviewed the Newmark algorithms which are preferably used in 

hybrid testing. This appendix shows the properties of all Newmark schemes as a 

response to varying system parameters. Other algorithms have been developed which 

improve accuracy and stability of the system and will be presented in detail as well. 

A.1. Newmark method 

  
Newmark family 

 Newmark α method 
HHT method

explicit
Central Difference Method

Constant Acceleration Method
Explicit α Method

Modified Newmark Method

implicit 
  

Constant Average Acceleration Method   
Linear Acceleration Method   

Implicit α Method   

 

Figure A 1: Newmark methods 

5Figure A 1 shows again the Newmark family methods. The tuning of the parameters 

α, β and γ creates both explicit and implicit methods with different characteristics, 

which will be discussed in more detail now. 

A.1.1. Newmark β method 
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In the Newmark β method one eigenvalue is always zero, the other two eigenvalues 

are a complex conjugate pair. Choosing the parameters β and γ correspondingly, the 

Newmark β method shows different characteristics. Predefined combinations of the 

parameters form known explicit and implicit methods, such as the central difference 

method, the constant acceleration method, the constant average acceleration method 

and the linear acceleration method.  

A.1.2. HHT method 
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 (A2) 

The Hilber-Hughes-Taylor method [16], or α-dissipation method, includes the 

additional weighting factor α. This allows further “tuning” for stability and 

numerical damping. For nonlinear systems [12], the generalized α-method is 

endowed with stability in an energy sense and guarantees energy decay in the high-

frequency range as well as asymptotic annihilation. However, overshoot and heavy 

energy oscillations in the intermediate-frequency range were exhibited.  

A.1.3. Explicit methods 

Explicit methods compute the response of the structure of step i+1 based on the 

results of step i. Explicit methods are easier to implement and usually preferred for 

hybrid simulations, however they usually have more restrictive criteria related to the 

natural step hω . 
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A.1.3.1 Central difference method 

The central difference method derives from the Newmark β method for 0β =  and 

0.5γ = . 0β =  means that the displacements are calculated explicitly.  

 1 1 1 1
2

2
2

n n n n n
n n

u u u u uu u
h h

+ − + −− − +
= =� ��  (A3) 

The method becomes unstable for 2hωΩ = >  independently of the natural damping 

and has a growing negative period distortion for growing values of the natural 

damping and step size. 

A.1.3.2 Explicit α method 
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The explicit α method results from the HHT method for the given parameter values. 

Positive values for α are allowed if β is set to zero. This way the method becomes 

explicit and conditionally stable. For 0α =  the method reduces to the central 

difference method with a stability limit of 2Ω = . However it is a one-step method, 

while the central difference method is a two-step method, although they are 

mathematically identical [50]. For positive α this limit decreases and stability 
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becomes more critical. The numerical damping depends highly on the natural step, 

which was not the case for the other methods. 

 

 

A.1.3.3 Modified Newmark Method 

In the modified Newmark method an additional parameter ρ  is added to the explicit 

α -method.  

 

1 1

2
1

1 1 12 2

( )
2

1
2

[(1 ) ] ( )

0 0

n n n n

n n n n

n n n n

hu u u u

u u u h u h

Mu K M u P K M u
t t
ρ ρα α

ρ α

+ +

+

+ + +

= + +

= + +

+ + + = + +
Δ Δ

≤ ≥

� � �� ��

� ��

��

 (A5) 

With a careful selection of the parameters the method provides numerical damping. 

However, stability is only provided for an interval of hω  as defined in equation 5(A6)

. 
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While the magnitude of stiffness-proportional damping is proportional to the natural 

frequency of a system, that of mass-proportional damping is inversely proportional 

to the frequency. Thus, in order to provide for small damping for the fundamental 

mode and large damping for the higher modes, it is best to have a positive α and a 

negative ρ [51]. 
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For 0α ρ= =  the central difference method, the explicit Newmark method and the 

modified Newmark method are all mathematically equivalent to each other. This 

means that they have identical stability and accuracy properties. However, their 

numerical characteristics can differ. For instance the central difference method has 

undesired significant error-propagation effects, which is less problematic for the 

other two methods [50]. 

 

A.1.3.4 Constant acceleration method 

The constant acceleration method results for 0β =  and 0γ = .  
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This means that both the displacement and the velocity can be calculated explicitly, 

however with the price of stability problems. Both high values of the natural step and 

low values of the natural damping lead to instability. Unlike most other methods, the 

constant acceleration method has an initial negative numerical damping for zero 

natural damping.  

A.1.3.5 Further explicit methods 

Chang [6] presented an unconditionally stable explicit algorithm in 2002. He used 

different weight factors as in the explicit Newmark method. The method comprises 

the advantages of explicit schemes and provides for unconditional stability 
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simultaneously. The amplification matrix is the same as for the constant average 

acceleration method and therefore shows the same properties of unconditional 

stability and energy conservation. Moreover, it provides better error propagation than 

comparable algorithms, such as the Newmark explicit method. 

Improved numerical dissipation for explicit methods is also achieved by applying 

quadratic functions for the parameters α, β and γ [5]. Generally, numerical 

dissipation can be introduced into the explicit form of the Newmark β method 

choosing 1/ 2γ = . This however brings the problem that the lower modes are 

damped too much, as the numerical damping is approximately proportional to the 

step (ζ Ω∼ ). Implementing α, β and γ as functions of the inverse of the mass and 

stiffness matrices of the structural system and the size of the integration time step, a 

quadratic relationship between the numerical damping and the step becomes 

possible. This means that particularly the higher frequencies are damped, which are 

usually due to noise, while no undesired damping for the low frequencies takes 

place. 

A.1.1. Implicit methods 

Implicit methods require information about the structural response at the 

displacement target in order to satisfy equilibrium at the end of the step. They 

provide for better stability characteristics and enable the use of bigger time steps. 
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A.1.1.1 Constant average acceleration method 

The constant average acceleration method derives again from the Newmark β 

method but is implicit and unconditionally stable. The period distortion is positive 

(numerical period is longer than natural) for low natural damping and negative for 

high natural damping. The method has been used for the hybrid tests in this study as 

it is stable and does not introduce any numerical damping. 
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A.1.1.2 Linear acceleration method  
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The linear acceleration method is another implicit and unconditionally stable method 

and can also include both positive and negative period distortion. 

A.1.1.3 Newmark α Method (Hughes) 

This method again derives from the HHT method shown in equation (A2), however 

another combination of the parameters is applied. If α is in the shown negative range 

and the other parameters are computed correspondingly, then the method is implicit 
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and unconditionally stable. For 0α =  the method reduces to the constant average 

acceleration method (A8). For negative α, the implicit part is weighted more and 

leads to more numerical damping. 
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An important difference to the earlier discussed β -method is the third eigenvalue. In 

addition to the complex conjugate pair, there is a real eigenvalue for any 0α ≠ . 

While for negative α the real eigenvalue is small and not of major interest in respect 

to stability, for positive α especially this real eigenvalue limits the stability as shown 

above in the explicit α method (A4). Shing [53] showed that convergence can be 

insured even though the actual stiffness matrix of a structure becomes non-positive 

definite as long as there is sufficient mass and damping in the structure and the time 

integration integral is sufficiently small. He also showed that the implicit α method 

always implies positive numerical damping and therefore stability. In the case of 

unloading and reloading of a nonlinear system, the unconditional stability of an 

implicit scheme depends on the time step h [31].  
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A.1.4.4 Operator-Partitioning Implementation 

The operator-partitioning algorithm is a combined implicit-explicit integration 

algorithm. The following predictors are calculated explicitly: 
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The predicted displacements are applied to the physical model and the force response 

is measured. Then one can solve for the new acceleration and then update with 

correctors.  
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The advantage of using the operator splitting method is that unconditional stability is 

guaranteed for non-linear structures of the softening type. In this study the operator 

splitting method has been used to compute the next displacement. However only one 

iteration based on the initial stiffness has been applied. 

Combescure [10] used a linearization of the earlier shown α-method, the α-Operator 

Splitting. By using a predictor step, this implicit scheme becomes non-iterative. 

Neglecting the actuator dynamics, i.e. by assuming that the actuator applied the 

predictor displacement accurately, the system is unconditionally stable. The 

feedback force is approximated by 

 1 1 1 1 1 1( ) ( ( ) )I I
n n n n n nr d K d r d K d+ + + + + +≈ + −� ��  (A13) 
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where 1nd +  and 1nd +
�  are the effectively applied and predicted displacements and IK  

is the initial stiffness. They found out that the α-Operator Splitting method is a good 

alternative to the more complex iterative schemes.  

A.2. Further integration methods 

A.2.1. Higher order accuracy integration method 

The common trapezoidal rule used for integration is of second order accuracy. In 

general, methods of αth order approximation are 2α-order accurate [46]. Therefore, 

there exists the possibility to improve the accuracy of the numerical algorithm by 

taking higher order polynomial functions. 

A.2.2. Solving the integrated equation of motion  

Solving the integrated equation of motion serves as another effective tool to increase 

accuracy and decrease error propagation [7].  
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The initial conditions must be satisfied like shown in equation 5(A14), the rest of the 

procedure is comparable to the original. An integration of the external forces and the 

restoring forces smoothes out the jagged character of the dynamic loading, 

eliminates the adverse linearization errors, captures better the external forces and 

thus leads to better accuracy. 

Depending on the chosen algorithm, the method can turn out as conditionally stable 

and display numerical damping [7]. By integrating the central difference method, the 
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displacement cannot simply be computed explicitly anymore as it evolves from the 

implicitly computed velocity in the original scheme. To avoid iterations and 

undesirable unloading or overshoot, the restoring force for the new time step can be 

estimated as in equation 5(A15) where k is the initial stiffness of the system. 

 2 2
1

1 1
2 2n n n n n n nr dt r dt hkd kh v r dt hr kh v+ = + + = + +∫ ∫ ∫  (A15) 

After estimating the restoring force, first the velocity and then the displacement for 

the next time step are computed. This method becomes more effective if the 

restoring force is estimated with an additional implicit term [2], such as represented 

in equation 5(A16). 

 2
1 1

1 ( )
2n n n n nr dt r dt hr h v v+ += + + +∫ ∫  (A16) 

This estimate results out of the assumption of linear stiffness, so that the change in 

the restoring force integral yields equation 5(A17). 

 1 1 1
1 ( )
2n n n n nr dt r dt r dt hk d d+ + +Δ = − = +∫ ∫ ∫  (A17) 

This successfully combines advantages of the integral form in handling rapidly 

varying loads and stiffness degradation with the unlimited step size associated with 

implicit methods. 

A.2.3. State-space 

Wang [59] used an integration of the state-space procedure with Nakashima’s 

operator-splitting concept. The state space procedure is based on an interpolation of 

the discrete excitation signals for piecewise convolution integrals. The Operator-

Splitting State-Space Procedure method turns out as conditionally stable. However it 
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exhibits more accurate results as the Newmark method as it provides for perfect 

conservation of the natural frequency and damping. Hence it does not lead to any 

period distortion or any energy dissipation and is therefore recommended for 

pseudodynamic testing if highly accurate results are desired. 

Krenk [24] developed a state-space time integration with fourth-order accuracy and 

energy control for linear systems. The algorithm is derived by integrating the phase-

space representation and evaluating the resulting displacement and velocity integrals 

via integration by parts. Krenk compared his method to common integrals, such as 

the generalized α-method, and showed that the accuracy increases from second- to 

fourth-order by evaluating the integrals via integration by parts.  

A.2.4. Modal weighting technique 

The modal weighting technique [15] is a hybrid method that spans both the Cartesian 

and modal bases simultaneously. By introducing a change of basis to modal 

generalized coordinates, the system can be expressed by a number of uncoupled 

second-order equations. An undamped, elastic, second-order system can be 

expressed that way as: 

 
1

( ) ( )eqn
m mm

X t x t
=

= Ψ∑  (A18) 

where mx is the scalar modal expression of the mth mode shape mΨ , which is 

obtained from 

 ( )T
m mx MX t= Ψ  (A19) 

So, the equation of motion could be decomposed in n decoupled equations: 
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which can be further simplified to 

 0l l lx xλ+ =��  (A21) 

To make the system stable, the natural frequencies are multiplied by a parameter γ 

with 0 1γ< < . This way the higher modes were reduced or completely eliminated. 

So, the eigenmatrix is multiplied by the modal norm TΨΓΨ with 
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According to the stability conditions of the amplification matrix the spurious high-

frequency oscillation modes can be attenuated. 
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B. APPENDIX – Impedance design methods in 

robotics 

This appendix reviews different applied impedance schemes in robotics. It shows 

different ways to control the actuator impedance for both cases where all the system 

parameters are known and cases where the structure stiffness or even more 

parameters are unknown.  

B.1. Defining target impedance 

A rule of thumb for choosing an adequate target impedance should be to make the 

manipulator impedance proportional to the structural compliance. According to 

optimization theory the impedance is chosen when the performance index, which is a 

function of interaction forces and displacements, is at a maximum or minimum. 

The objective function to be minimized is: 

 2 2

0

{( / ) [( ) / ] }tol tolQ F F r x x dt
∞

= + −∫  (B1) 

Where tolx  and tolF  are the position and force tolerance, r  and x  are the 

commanded and applied actuator displacements. The optimal damping factor optζ  

results from the optimal stiffness /opt tol tolk F x=  as 2( )opt optk mζ = . Even with 

extremely little information about the structure, the interaction between actuator and 

structure may be controlled so as to meet task specifications.  
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B.2. Design models for known structure stiffness 

If a target impedance is found, then the desired interaction force can be derived. If 

this force is not achieved, then the model has an impedance different from the target 

impedance. Dividing the force by the target impedance yields the desired 

displacement error. The difference between the desired and actual displacement error 

then serves as the adjusting feedforward input as shown below in 5Figure B 1. 

target impedance

open loop TF

Kp

gain

1

M.s  +C.s+K2

disp

Bl

m*L.s  +(m*R+c*L)s  +(k*L+c*R+Bl^2)s+k*R3 2
Sine Wave

ef f ectiv e disp. error

desired disp. errorf f

 

Figure B 1: Feedforward with target impedance 

B.3. Design models for unknown stiffness and/or 

parameter uncertainties  

If the structure stiffness is not known or varies, then adaptive schemes have to be 

developed in order to achieve the target impedance. In the following different 

adaptive schemes will be presented briefly. 

B.3.1. Adaptive methods 

Seraji and Colbaugh [45] showed two schemes generating the reference position 

trajectory required to produce a desired contact force despite lack of knowledge of 

the structure stiffness and location. The direct adaptive control scheme by [45] is 
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represented in 5Figure B 2. In this case not the displacement but the force error is 

used to create the corresponding reference input. In contrast to the previously shown 

scheme, the force error basically passes a PID controller before it is fed back to the 

system. This allows a better and especially adjustable impedance design. 

 

Figure B 2: Direct adaptive control [45] 

Jung, Hsia and Bonitz [22] showed a new, simple and stable force tracking 

impedance control scheme that tracks a specified desired force and compensates for 

uncertainties in environment location and stiffness as well as actuator dynamics. 

They defined for an accurate force control the following three aims: 

1. A position tracking error due to unknown actuator dynamic uncertainty 

should be minimized. 

2. A desired force should be directly commanded to have the force tracking 

capability.  

3. The controller must be robust enough to deal with unknown environment 

stiffness and position. 
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Their main idea was to minimize the force error directly by using a simple adaptive 

gain when tracking unknown structure stiffness. 

Carelli and Kelly [4] presented a model, where parameters estimation combined with 

an additional compensation through an extra signal achieved asymptotic tracking 

properties of the adaptive controller.  

B.3.2. Estimator model 

Many adaptive methods include the estimation of parameters. In the indirect adaptive 

strategy by Seraji and Colbaugh [45], the force error is fed back into the system to 

adjust the reference input such like in the earlier example. Additionally, the 

measured force and displacement are used to estimate structural parameters online. 

The required reference position is then computed based on these estimates.  

Shibata [47] obtained a robust impedance controller using a disturbance observer. 

The dynamic characteristics of the object are well estimated by an adaptive 

identification algorithm. The disturbance observer eliminates the modeling errors of 

the system and increases the robustness of the system. This made it possible to 

estimate the accurate parameters of the dynamic model and the structure stiffness. 

B.3.3. Learning impedance 

Because of the nonlinearity of the dynamics, the identification and estimation 

techniques cannot always be deployed easily. The ideal control system is supposed 

to adapt to any changing parameters as well. In other words, the model needs not 

only be able to adjust to unknown parameters, but it has to be able to adjust to 
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changing parameters as well. Learning controllers are referred to the class of control 

systems that generate a control action in an iterative manner to execute a prescribed 

action. The reference input is computed in a more complex way than in the earlier 

presented strategies. However it allows for the computation of a control mechanism, 

which passes all the requirements for hybrid testing and dynamic testing in general. 

This means a stable impedance control mechanism which successfully handles 

unknown or changing structure stiffness or model parameters. 

Cheah and Danwei [8] developed a learning impedance control. The feedforward 

control inputs are learned such that the system tracks the desired motion and force 

trajectories as the actions are repeated. First, the stability limits for their control 

scheme were derived and the target impedance defined. Then, with the commanded 

and desired reference displacement ( )r t , the measured actual displacement ( )x t  and 

the measured actual force ( )kF t , the equation of motion is solved for the force error 

( )k tω  as shown in equation 5(B2). 
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= − + − + − +
= + + − +

�� �� � �
 (B2) 

Then this error is reduced iteratively to achieve a convergence in the solution. A 

higher controller gain is needed for a desired system response with light damping. 

This is because for such a system a high overshoot arises and hence a higher 

controller gain is required to suppress it. The target impedance depends on the 

structure stiffness as can be seen by rearranging 5(B2) for zero error (convergence): 

 2[ ( ) ( )] 2 [ ( ) ( )] ( )[ ( ) ( )] ( )k k kr t x t r t x t k r t x t kr tωζ ω− + − + + − =�� �� � �  (B3) 
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Therefore, in the case of a very stiff structure, the target impedance is a lightly 

damped system, which requires a higher controller gain to guarantee the convergence 

of the learning impedance system.  

Cohen and Flash [9] represented the associative search network (ASN) learning 

scheme for impedance parameters. This scheme does not use an actuator model or 

known structure stiffness. It is a stochastic scheme that uses a single scalar value as a 

measure of the system performance. This method can be used if no information is 

given about the system dynamics and the structure. However, there is a tradeoff 

between the time spent on learning and the quality of the outcome of that learning.  

Katic and Vukobratovic [23] used the so-called “connectionist architectures” as 

impedance control and showed a fast and robust on-line learning. The main feature 

of this scheme is the use of multilayer perceptions with special topology with are 

integrated in non-learning impedance control algorithms. 

B.4. Further control methods 

Tzierakis and Koumboulis [57] developed a method for multi manipulator systems, 

where apart from position control, also the internal forces need to be controlled. A 

simple and direct algebraic approach is proposed to handle situations where 

disturbance forces act on the handled objects. It is shown that there exists a linear 

state feedback law, satisfying the independent force and position control and the 

decoupling between different actuators.  

Sekhavat [43] defined a contact task control as the ability of a manipulator to follow 

a free space trajectory and make contact with the environment until all the energy of 
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impacts is dissipated and the desired contact force is achieved. They developed a 

controller for hydraulic actuators to regulate the impacts during transition phase from 

free space to constraint motion. The scheme does not require force or velocity 

feedback or knowledge of the structural or hydraulic parameters.  

Schaffer and Hirzinger [1] compared impedance, stiffness and admittance control. A 

new impedance controller enhanced by local stiffness control showed a better 

performance than classical impedance and stiffness control. Compared to admittance 

control, it has lower geometric accuracy, but higher bandwidth and impedance range. 

Pratt [40] showed the relationship between the impedance and the electrical circuits 

of Norton and Thevenin ( 5Figure B 3). The electrical current is modified passing the 

circuit and has the effect of a virtual impedance. B and K command the actuator to 

create a virtual mechanical impedance equivalent to a parallel combination of a 

damper and a spring, respectively. F commands the actuator to add an offset force in 

parallel with the damper and spring, or, when divided by the stiffness K, an offset 

position in series with the virtual spring.  

 

Figure B 3: Norton and Thevenin Equivalents of Virtual Impedance [40] 
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Using Hogan’s impedance control theory, Mills [33] developed an open-loop control 

over generalized forces and position. Open-loop design does not require a force 

feedback, hence no force load cell is required. However, this open loop control only 

allows for a crude control over the contact forces. In comparison to the closed loop 

methods, the open loop approach moreover does not exhibit robustness to dynamic 

parameter uncertainty. The main feature of this approach is that both the actuator and 

structural dynamic parameters are known exactly and the mechanical impedance of 

the manipulator remains unchanged during contact between actuator and structure. 

The input trajectory to the manipulator is varied, so that the desired force and 

position trajectories result. The input variables are chosen according to the equation 

below, where the index s is used for the structural mass, damping and stiffness 

matrices, where x  is the desired actuator deformation and ix  is the chosen 

displacement in order to achieve the desired displacement r . 

 ( ) ( ) ( ) [ ]i i i
s s sM r x B r x K r x M x B x K x− + − + − = − + +�� ��� �� � �  (B4) 

In order to reject undesirable high-frequency disturbances (caused by a stiff 

structure), Anderson and Spong [3] introduced a general control approach, called 

hybrid impedance control (HIC), which in its simplest forms reduces to Hogan’s 

impedance control. It combines impedance control and hybrid position/force control 

into one strategy while allowing for more sophisticated impedances.  

Lawrence [28] showed the effects of computation and communication delays and 

manipulator dynamics on the behavior of two primary approaches to impedance 
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control. For both position and force control, the stability limits for the impedance 

parameters are presented.  

If the manipulator runs in position control, forces are sensed explicitly and position 

commands are issued to the inner loop controller. The measured interaction force F 

allows the creation of the position adjustment vector xa: 

 
2 1( ) [ ] ( )a

c a

x s Ms Cs K F s
x r x

−= + +

= +
 (B5) 

This control scheme has been applied in this dissertation, where the adjustment 

vector is equivalent to the feedforward input.  

The flexibility in the actuators, as well as the iteration rate of the controller limits the 

admissible gains and therefore the overall performance. Pelletier and L. K. 

Daneshmend [39] developed a method based on Whitney’s damping control scheme, 

where the actuator reacts as a generalized damper. It also works if it is not sure if 

position or force control should be applied. The best solution will always be a 

compromise between speed of response and stability at high structure stiffness. The 

aim is therefore to adjust the system parameters to tune the response according to the 

stiffness. Typically if the non-adaptive robot hits a soft wall at a certain initial 

velocity, it will loose speed slowly till it reaches the desired force. This behavior is 

sluggish from a force control point of view but reacts according to the desired 

impedance. On the other hand, with the proposed adaptive damping control scheme, 

the controller will speed up the force response and increase the robot velocity to 

reach the desired force faster. For low structure stiffness, the adapter speeds up the 
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response, while for high stiffness, it has a stabilizing effect that allows the controller 

to be stable at a stiffness four times higher than in the non-adaptive case.  

Lasky and Hsia [27] presented a reference force-tracking impedance control system, 

consisting of a conventional impedance controller in the inner-loop and a trajectory-

modifying controller in the outer-loop for force tracking. Like shown earlier in 

position controlled actuator systems the interaction force is controlled indirectly 

through an impedance function. The outer-loop trajectory modification algorithm 

adds the capability of reference force tracking to the inner-loop impedance control.  

Liu and Goldenberg [29] controlled the impedance by tracking a desired acceleration 

trajectory. Defining a desired acceleration trajectory online and the use of a PI 

feedback controller allowed an efficient and robust impedance control. 

Task performance depends on the accuracy at which the desired impedance is 

attained. The conflict between impedance accuracy and robustness to uncertainties 

has been presented by Valency and Zacksenhouse [58] by an Eigenvalue analysis. 

Three approaches have been suggested to enhance the robustness of impedance 

control, which are low-order impedance control strategies, such as stiffness control, 

adaptive and robust control methods and the inner/outer control strategy. The 

inner/outer method achieves its robustness at the expense of accurate tracking of the 

desired impedance. The problem is that the impedance adaptive methods do not 

account for external disturbances. Valency and Zacksenhouse showed a model with 

improved robustness and accurate impedance tracking. The proposed method takes 

advantage of the error-correction capabilities of position controllers while 

maintaining good impedance tracking.  
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C. APPENDIX – Transfer functions for EM actuator 

C.1. Open loop transfer functions 

The actuator in open loop is a two input system. The actuator displacement depends 

on the voltage input u and the interaction force F, so that ux fxx H u H F= − . The 

transfer function representation of the state space description of the electromagnetic 

actuator in equation 5(3.19) is: 

 
2 2

1
( ) ( )ux

fx ux

BlH
mLs mR cL s cL Bl s
R LsH H

Bl

=
+ + + +

+
=

 (C1) 

Assuming a linear structure stiffness, the interaction force is F kx= . The actuator 

can be considered as a one-input system, 
1

ux
ol

fx

Hx u H u
kH

= =
+

, where olH  is the 

linearized open loop transfer function relating the actuator displacement to the 

applied input voltage, 

 3 2 2( ) ( ( ) )ol
x BlH
u mLs mR cL s cL Bl kL s kR

= =
+ + + + + +

 (C2) 

C.2. Closed loop transfer functions 

Applying closed loop displacement control with a proportional controller, the 

voltage input is the displacement error multiplied by the proportional gain pK . 
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Substituting ( )pu K r x= −  into ux fxx H u H F= −  yields the actuator displacement in 

closed loop control for an interaction force F.  

 
1 1

ux p fx

ux p ux p

H K H
x r F

H K H K
= −

+ +
 (C3) 

In order to derive the actuator impedance, an additional external force disturbance on 

the system is considered (5Figure 4.1). With a linear structure stiffness, and the 

external force disturbance, the interface force extF kx F= + , and the actuator 

displacement from equation 5(C3) is given by 

 

( )
( ( )) ( ( ))

p ux ux
ext

p ux p ux

cl cl ext
p

Bl K H R Ls Hx r F
Bl K k R Ls H Bl Bl K k R Ls H Bl

R LsH r H F
Bl K

+
= −

+ + + + + +

+
= −

 (C4) 

The linearized closed loop transfer function relates the actuator displacement to the 

reference displacement input. 

 3 2 2( ) ( ( ) )
p

cl
p

Bl KxH
r mLs mR cL s cL Bl kL s Rk Bl K

= =
+ + + + + + +

 (C5) 

The second term in equation 5(C4) is the compliance of the coupled system and 

determines the deformation of the coupled system due to the external force. The 

reciprocal of the compliance is the impedance. 

3 2 2

3 2 2

actuator impedance

( ) ( ( ) )ˆ
( )

( ) ( ( ) )

p pext

ext cl

p

Bl K mLs mR cL s cL Bl kL s Rk Bl KxK
F R Ls H R Ls

mLs mR cL s cL Bl s Bl K
k

R Ls

+ + + + + + +
= = =

+ +

+ + + + +
= +

+���������	��������


 (C6) 



 

 

 

145

C.3. Feedforward 

Now, the reference input r is altered by an additional feedforward input. Substituting 

p

Rr F
Bl K

+  for r in equation 5(C3) gives  

 3 2 2( ) ( ( ) )
p

p

Bl K r LsF
x

mLs mR cL s cL Bl s Bl K
−

=
+ + + + +

 (C7) 

Substituting again extF kx F= +  into equation 5(C7) gives 

 

, ,

( )
( ) ( )

p ux ux
ext

p ux p ux

cl FF cl FF ext
p

Bl K H R Ls Hx r F
Bl K kLs H Bl Bl K kLs H Bl

R LsH r H F
Bl K

+
= −

+ + + +

+
= −

 (C8) 

The linearized and compensated closed loop transfer function relating the actuator 

displacement to the reference displacement then is different from equation 5(C5) and 

is given by 

 , 3 2 2( ) ( ( ) )
p

cl FF
p

Bl K
H

mLs mR cL s cL Bl kL s Bl K
=

+ + + + + +
 (C9) 

The impedance of the compensated system ˆ
FFK  is now lowered in comparison to 

equation 5(C6) by an additional term. 

3 2 2

,

3 2 2

( ) ( ( ) )ˆ
( )

( ) ( ( ) ) ˆ

p pext
FF

ext cl FF

p

Bl K mLs mR cL s cL Bl kL s Bl KxK
F R Ls H R Ls

mLs mR cL s cL Bl s Bl K R Rk k K k
R Ls R Ls R Ls

+ + + + + +
= = =

+ +

+ + + + +
= − + = −

+ + +

 (C10) 
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