

CU-NEES-08-08

LTOS

LIGHTWEIGHT TELE-OPERATION
SYSTEM MANUAL

Version 1.0

By

Kent Polkinghorne, I/T Manager
Robb Wallen, Instrumentation Engineer

NEES at CU Boulder

The George E Brown, Jr. Network for Earthquake Engineering Simulation

01000110 01001000 01010100

September
2008

Center for Fast Hybrid Testing
Department of Civil Environmental and Architectural Engineering
University of Colorado
UCB 428
Boulder, Colorado 80309-0428

 - 2 -

Table of Contents

1 Overview...2
2 Comparing LTOS and RDV ..2
3 Quick set-up with demonstration files..4
4 Communication path ...6
5 Client configuration...7

5.1 How to host ...7
5.2 HTML tags..7

5.2.1 JavaScript tag example...8
5.2.2 ActiveX tag example..8
5.2.3 Netscape/Mozilla tag example..9

5.3 Flash version ...9
6 Demonstration server configuration...9
7 Protocol...10

7.1 General message format...10
7.2 Layout messages..10
7.3 Information messages..12
7.4 Flash network security policy file ..12

8 Future work...13
9 Acknowledgements...13

1 Overview
Many programs for remote operation and/or sensing of an experiment are available today.
Some examples are LabVIEW Remote Panel
(http://sine.ni.com/nips/cds/view/p/lang/en/nid/11017), Remote Desktop
(http://www.microsoft.com/windowsxp/using/mobility/default.mspx), and RDV
(http://it.nees.org/software/rdv/index.php). We note some drawbacks of these programs
such as a large download size (about 100MB in the case of LabVIEW Remote Panel),
non-intuitive interface, a complex information transfer protocol, and loss of control of the
host. The Lightweight TeleOperation System (LTOS) is intended to overcome the
drawbacks mentioned. The client is written in Adobe® Flash® which is already installed
on millions of computers, the size of the download is very compact, the protocol is
simple, and the host system can control the inputs and usage. Use of LTOS could include
many Education and Outreach situations where individual users or schools would want to
connect to an experiment hosted by a NEES site without needing extensive preparation
on either end. Our version of LTOS is implemented with a LabVIEW server as the web
host and a virtual instrument (VI) as the experiment’s data host and data acquisition.

2 Comparing LTOS and RDV
We note some efforts that have already been undertaken for remote operation using RDV.
A similar product to LTOS is The University Consortium of Instructional Shake Tables
(UCIST) which was developed by Prof. Shirley Dyke to enhance university education in

 - 3 -

earthquake engineering (S.J. Dyke, Z. Jiang, R. Christenson, X. Gao, and S. Courter,
"Teleoperation and Teleparticipation of Instructional Shake Tables Using the NEES
Cyberinfrastructure" Proceedings of the World Forum on Smart Materials and Smart
Structures Technology, Chongqing and Nanjing, May 22-27, 2007). Their work led to a
method for remotely viewing and operating a shake table using some tools from the
NEES cyber infrastructure. For client viewing it relies on RDV with a custom display
within RDV for experiment control. Below is a schematic of their implementation at the
University of Connecticut:

(From "Teleoperation and Teleparticipation of Instructional Shake Tables Using the NEES
Cyberinfrastructure”)

Let us compare some pros and cons between RDV and LTOS:

RDV LTOS
Contains a technical interface meant for
engineers with many options and buttons

Interface only has what is needed, simple
for non-engineers to operate

Not always in real-time mode, difficult for
novice users to tell if they are looking at
the past or the now

Always real-time display

Layout is limited to grid, not remotely
changeable during session

Layout more precisely controlled by server,
components can be created and deleted
during the session by the server

Real-time graph data Quick real-time display, smooth-scrolling
graphs

Requires Ring Buffer Network Bus for
communication from experiment to client

Simple network protocol, easy to
implement into existing control software,
fewer layers mean quicker feedback

 - 4 -

No ability to control the experiment
without additional software

Built-in controls

Already exists, mature product Just starting out, not in use by as many
users

More scientific (data pause and replay, user
can configure channels monitored)

Less scientific but can still save data results
to user’s computer for analysis

In general the focus for LTOS is the non-engineering community but is not limited to it.
Some examples would include grade school teachers who want to do a live demonstration
in their class, university students taking introductory classes needing to run a small
centrifuge, high school honors students remotely operating a fan to see the effects on a
miniature power-generating windmill.

3 Quick set-up with demonstration files
A simple demonstration can be done if you’ve downloaded these sample files:

Teleoperation client.swf The Flash client itself.
Hosting_page.html A sample HTML source that hosts the Flash Client.
AC_RunActiveContent.js An Adobe file used by Hosting_Page.html to facilitate

the opening of the Flash client.
LTOS\Shaker.vi The main VI. It communicates with Server.vi and

operates the shaking table.
LTOS\Server.vi Handles connections and the data transfer to/from the

client.
LTOS\EOT custom.txt A customized ground motion that impresses young

viewers of our shaking table.
LTOS\buildLayoutCommand.vi In the future this will be called by Shaker.vi to

construct the actual layout messages sent to the Flash
client.

LTOS\buildUpdateCommand.vi Is called by Shaker.vi to construct the actual update
messages sent to the Flash client.

LTOS\processRequest.vi Is called by Shaker.vi to interpret the update messages
received from the Flash client.

LTOS\TCPConnection.vi Is called by Shaker.vi to handle the details of TCP
connections.

1. Edit Hosting_page.html and replace the text “neesLTOS.colorado.edu” with the

IP address of the computer running the server VIs.
2. Open the files LTOS demo.vi and Server.vi in LabVIEW.
3. Enable the LabVIEW web server if it isn’ t already. Do so by going to Tools /

Options / Web Server: Configuration / Enable Web Server. The web server root
needs to be C:\Program Files\National Instruments\LabVIEW 7.1\www.

4. Start both VIs (order doesn’t matter).

 - 5 -

5. Browse to ���������	����

�������
�������������������! #"�����$%"! #"�&���'�(�)���*�+�,.-
��/�,�021�����3�4 and you will see
the LTOS client.

The Flash client loaded but not connected to the LabVIEW server.

6. Click on “Connect” to have the client connect to LabVIEW.
7. You can now play with the controls on the client.

This LabVIEW server is similar to what we use on our Education and Outreach shaking
table that students can watch. The Flash client when used with the demonstration server
should look like this:

 - 6 -

The Flash client when connected to the demonstration server and with the experiment running.

4 Communication path
LTOS uses comparatively few levels of communication. An example path of
communication is shown below. LTOS requires no middleware between the software
controlling the experiment and the client. Our demonstration LabVIEW program does
the data acquisition and the LTOS communication together.

 - 7 -

LTOS clients

Internet

Experiment

LTOS Server

Browser-equipped Remote Computers

Data acquisition and control

A schematic of the data flow in a typical LTOS configuration

5 Client configuration

5.1 How to host
Hosting the client itself is very easy. The files AC_RunActiveContent.js and
Teleoperation client.swf are placed into a directory accessible by a web server. A HTML
source file also needs to be present that would be written and customized by the
individual site. Some HTML code to magically make the Flash client appear needs to be
on that page (the code examples are listed in the next section). That’s it!

It is possible to host the Flash client on a server different than the server hosting the
experiment data.

5.2 HTML tags
Because of the variety of browsers, Adobe recommends quite a few HTML tags in the
page hosting the Flash client to achieve maximum usability. This includes tags for a
JavaScript launcher, for ActiveX, and for the Netscape/Mozilla-style <embed> method.
The Adobe default is to use all of the three methods in the same hosting page, see the
example hosting page. A specification of HTML can be found at
http://www.w3.org/TR/html401/.

Some individual variables that can be set via the tags and their function are:

1. FlashVars: this is a general Flash variable and we use it to pass in the name and
port of the data server, the URL for the help button, and the title to be displayed in
the client. It takes the format

 - 8 -

“Server=neesLTOS.colorado.edu&Port=3688&HelpURL=http://nees.colorado.ed
u/&ClientTitle=Instructional%20Shake%20Table” where neesLTOS.colorado.edu
is the name of our demonstration server, 3688 is the TCP port, the help button
navigates to http://nees.colorado.edu/, and the title displayed in the client is
“Instructional Shake Table” .

2. width, height: usually both are “100%” but can be changed to any percentage
to cause the Flash client to consume more or less of the visible window.

3. a l ign : usually “middle” , determines how the client is located within the browser
window. Can also be “L” , “R” , “T” , or “B” to align along the left, right, top, or
bottom edge.

4. s c a l e: usually “showall” , determines if the client should scale down if the visible
window is made smaller. Can also be “noborder” which might crop an edge or
“exactfit” which will change the original aspect ratio.

5. b gc o l o r : usually “#ffffff” , and is the HTML color code for the background of the
client. Use to make the client’s background match that of the hosting page.

Note that these variables are all listed in each of the three tag methods so if you change
one of them you need to change it in all three sets of tags. The sets are listed in the next
section.

5.2.1 JavaScript tag example
���������	�
��
�����
��������������������	�������	����
�����
����������! #"%$�&'"�(����� �)��*�������+�-,/.0��1�
�����
����	�
��
�����
�����
��������'�! #"�(�����������
����� �)������2���435��
��+���������*�����	���	���	����
�����
�����������1�
�����
����	�
��1��������	�
��6�)��	7��
��
�����
��������������������	�������	����
�����
��������

�8:9;�! #"%$�&'"�(����� �)����������+���-,�<>=
�����?�@�A9��'B���
�
C�������D�E��F���
��@��
G�! #"�(�����������
����� �)����������435��
H3I�	<4.J ����
��>=
�! #"%$�&'"�(����� �)����������A9K ��)�����6���
�� K�LK �������HM01�1���)#N�����)����43PO������@)�O�����
��435��)�O	1�����6�1�
���)���Q�N2�	���	1�����6�
	1�8�����
���1�
�N!8�����
��H35����6�R����?��
�
�)�����S L , L , L , K�LK N�
������ K�LCK5T ,�,#U K�LK ����
������ K�LCK5T ,�,#U K�LK
���� K�LCK B!������)����?�@����
�)��C����
������ K�LK F�������
��	7 K�LCK ��
���� K�LK ��������
���
�������� K�LCK �������HM01�1	N�N�NV3PO����?�@)�O�����
��435��)�O	1!��)	1�������8�����
��������	7��?� K�LK ����
���� K�LCK O�
�������� K�LK �����	7 K�LCK �?����� K�LK ��)�)�� K�LCK �?����� K�LK
�������� K�LCK
���)#N!����� K�LK $	����
���W!�?��
 K�LK5X �?�I���?�I��������
�&'B�Y X 35�*)���)?�@����)43P������ZH[�)?�@�	��\]�^�^�Z!_�������`�(�&����������HM01�1�������
H35��)���)?�@����)a3P������1	Z! ���
������	B�
������	��b���

�?��������
�)�������U�c�, X ����Q��	U�c�,#B!��6���� K�LK N!O�)���� K�LCK N�
�����)#N K�LK ���	��
�����8�)���� K�LCK 8�����
�� K�LK
�� K�LCK B!������)����?�@����
*)��C����
������ K�LK 6�����)���)?� K�LCK R�8�8�8�8�8�8 K�LK ����O�� K�LCK B!������)����?�@����
�)��C����
������ K�LK O������ K�LCK 8�����
�� K�LK ������)#N%$	����� X ���@����� K�L-K 8�����
�� K�LK ������)#N X ����
����#��������
�
 K�L�K
���O���d�)�O���
�� K�LK O�)	��
�� K�LCK B!������)����?�E����
�)��C����
������ K�LK
�����
���� K�LCK�K
<4.e1�1������f�! ���)����J

��1�
�����
����	�

5.2.2 ActiveX tag example
��)�6���������������
�
�
��	���	����
�
��4MP��c�g�����6�]���h�����]���h T�T ��8�h*S�]�6�^�h�i�i�ikj�j�\�j@i�,�,�,�,��
��)�����6���
��	���	�������HM01�1���)#N�����)����43PO�������)�O�����
��435��)�O	1�����6�1�
���)���Q#N!�	���	1�����6�
�1�8�����
���1�
�N28�����
��H35����6�R����A��
�
�)�����S L ,L , L ,��lN�
���������� T ,�,#U%�C����
������	��� T ,�,*U%�+
��	���'B!������)����?�@����
�)�������
��������m����
���������O�
*�����������

 - 9 -

���������	��
��	�	��
��	�������	���	���	���������	����
��
����� �����
�
��	����!#"�$��&%('�)���)����	*)+%,�	*��.-0/�)���1�
�2�3	4	4.-65	������7���!.
���1	18�&9;:	:�
��	���&%('�)���)����	*)+%<�	*���:�-6=��	>���
�1?"0>�1�����
�@	
	��1
���	'�1�>�)�
����.A�B�C��	����D��?A0B�C?"6��E	���F��:	G
���������	��
��	�	��
������	��)?H0�	'���>	��1?��'	'����	���������	����
������	���	I)	�	��>	
��J:	G
���������	��
��	�	��
������	��)?HK���	�	�	�	'����	��
��J�����	����
���L	���	������:	G
���������	��
��	�	��
����)���>����������	����
��#"6���	�)��������	1�>�)�
M'��	>���
�1+%(�.H�L���:	G
���������	��
��	�	��
����	��
	���N�����	����
���L	���	�	����:	G
���������	��
��	�	��
���O������	>P1�Q��������	����
�����>�R�����:	G
���������	��
��	�	��
���E�R�'�)��P)����������	����
��.S�L	L	L	L	L	L���:	G

5.2.3 Netscape/Mozilla tag example
���	��E��	*F�������	�.�	���	��
��
����� �����
�
��	����!#"�$��&%('�)���)����	*)+%,�	*��.-0/�)���1�
�2�3	4	4.-65	������7���!.
���1	18�&9;:	:�
��	���&%('�)���)����	*)+%<�	*���:�-6=��	>���
�1?"0>�1�����
�@	
	��1
���	'�1�>�)�
����.A�B�C��	����D��?A0B�C?"6��E	���F�T����'�
��#"6�����)���������1�>�)�
M'	�	>	��
�1+%(�.H6L��N�	��
	��
���L	���������NO������	>�1�Q	
0���	>�R����
E�R�'�)���)��
��.S�L	L	L	L	L	L���H�>�*	1���
���U�C	C?A0�V����>�R���1�
���U�C	C�A0�T
��	�	��
��#"6�����)��������	1�>�)�
M'	�	>P��
�1��N���	>�R�
�
�����>�*	*������
���	��)?H��	'���>	��1?��'	'����	��
0�����	�	�	I)	�	��>	
��T���	��)?H0���	�	�	�	'����	��
�
���L	�8�	�����N1�Q�����
������	�	�	>	'���1�>�)�
�:�W�X	�	��)�'	D�H6������X
L������	���T�	�	��R�>	
	�	���	R	�	
�����1	1��&9;:	:�H	H	HY%,�	��'���)	�	�	*�>��+% '�)	��:�R)�:�R��	1	L������	�	�	����Q�������:	G

5.3 Flash version
The LTOS Flash client was developed using Adobe Flash CS3 Professional version 9.0.
The client contains ActionScript 3.0 and needs to have Flash version 9.0 or better. The
current version is 9.0.124.0 and is already installed on many computers at this time.

6 Demonstration server configuration
The included demonstration LabVIEW server is an adaptation from our Education and
Outreach shaking table to show how one could use LabVIEW as a server to the LTOS
client. The server could be implemented in a variety of programming languages and
operating systems as long as it can receive incoming TCP connections and send and
receive text packets. The protocol was kept simple to allow for the easy addition to
existing control programs of the LTOS server.

The demonstration server presents three controls to the client. The first is the run/stop
button which starts and stops playback of the EOT custom.txt file. The second allows the
user to change the amplitude of the playback. The third is the graph which displays the
playback versus time. Normally one would see something such as a daqMX control in
LabVIEW to control an actuator’s movement from the playback for example but we’ve
removed that for this demonstration.

After following the directions for doing a quick set up of the demonstration server and
connecting with the client, one would do something like click the Run button. A position
is displayed on the graph and the user can change the amplitude to see the results. If
LabVIEW’s web server is enabled and set to the default directory of C:\Program
Files\National Instruments\LabVIEW 7.1\www then clicking on “Save data” in the client
will download a file named “output.csv” which is being written by the server. The
demonstration server won’t operate if this directory doesn’t exist. Some parts of the
LabVIEW demonstration server are shown below.

 - 10 -

 The LabVIEW experiment control code. The LabVIEW communication server code.

7 Protocol

7.1 General message format
The messages transferred back and forth from the Flash client to the data server are
simple to implement and use. They are asynchronous in that no message depends on a
response and no message causes a blocking action. Each message is composed of one or
more lines of text with a newline (\n) at the end of each line and a NULL (\00) at the end
of each message. Our example LabVIEW server assumes that each message will arrive
as one TCP packet (without fragmentation or combining). Even though TCP doesn’t
guarantee this the LabVIEW server hasn’t had problems with it. The Flash client can
tolerate fragmented or combined TCP packets.

The example server listens on TCP port 3688 and the client is currently hardwired to
connect to this port. After the server receives a connection it sends the commands to set
up the layout of controls on the client. After the client receives a layout command it
sends a message setting the “SETUP” variable to TRUE which is interpreted by the
server to send the current values of all variables to the client. This is the mechanism by
which the current values in the LabVIEW server are communicated to the client.

7.2 Layout messages
The messages in this group are sent from the server to the client to configure the position
and type of controls. Controls can be created at any time and can also be destroyed at
any time thereby allowing for different “screens” on the client during one session.

Attributes to consider for every control to be created are what type it will be, its name, its
X and Y position, and if it is an input or output (or both). As far as the Flash client is
concerned, every control is both readable and writeable (an indicator and a control in
LabVIEW terms). However a flag in the layout sequence determines whether the Flash
client will allow updating or not of a particular control.

 - 11 -

Most layout commands follow the same order and look like this (to create a numeric
input named “Acceleration” that is not changeable by the user, positioned at (100, 350),
and has lower and upper limits of [0,2]):

CREATE
N u m e r i c
Ac c e l e r a t i o n F AL S E
1 00
3 5 0 0
2

The mandatory parameters are the control’s name, whether it is changeable by the user or
not, it’s X position, and its Y position. Type-dependant parameters may follow and are
listed below. Remember that the message above would be terminated by a NULL after
the last carriage return (and must not have another carriage return following the NULL).
The available control types are:

• To g g l e L i g h t : similar to the Boolean indicator in LabVIEW, it looks like a light
that is either dark for FALSE or green for TRUE.

• To g g l e S w i t c h : similar to the Boolean control in LabVIEW, it is a toggling two-
button switch. It requires one more parameter which is the title of the off
position’s button. The top position sends TRUE and the bottom sends FALSE.

• To g g l e B u t t o n : similar to To g g l e S w i t c h , but it a single button with a label that
toggles between two values. It requires one more parameter which is the title of
the button to activate the FALSE position.

• N u m e r i c : similar to a numerical indicator/control in LabVIEW, it is a text box
where the user can type a number or click up/down buttons (or use the mouse
wheel) to change the value. It requires two more parameters which are the
minimum and maximum values that the user can enter.

• Te x t u a l : a standard text box where the user can enter text or messages can be
shown.

• B o x : a box to draw on the screen. It requires two more parameters which are the
width and height.

• G r a p h : a type of plot where each horizontal pixel represents one data point. The
plot scrolls when it is filled and has automatic ranges for the Y axis and no labels
on the X axis. The user can click on the graph to clear it which can send a
message to the server.

• G r a p h Ti m e d : similar to G r a p h but has labels on the X axis as well showing the
time at various points.

• X Y s e r i e s : similar to G r a p h Ti m e d but plots an X versus Y line for the last 500
data points. It has labels on both the X and Y axis and automatically scales to the
largest of all data received since resetting the plot.

 - 12 -

7.3 Information messages
Information messages are what convey data changes, either from the experiment or from
the user, between the server and client. The message format is the same whether the
server or the client sends it and is similar in design to the layout messages.

A sample information message looks like this (if the server were to change the numeric
value of Acceleration to 1.22 and deactivate the light named Shaking):

UPDATE
Ac c e l e r a t i o n 1 . 2 2
S h a k i n g
F AL S E

Any number of control updates can be combined into one message even though our
LabVIEW demonstration server doesn’t do that. The XYseries and GraphTimed controls
require two parameters separated by a semi-colon in their update, such as in this example
(to update the Temperature graph with a Y value of 27.4 and an X value of 578):

UPDATE
Te m p e r a t u r e
2 7 . 4 ; 5 7 8

Remember that each of the above messages is terminated with a NULL.

The Boolean types use the strings “TRUE” and “FALSE”. TRUE is associated with an
on or activated state, and FALSE with an off or deactivated state. For the graphing types
when the user clicks the “Clear data” button (or clicks on the graph background) then an
update is sent to the server with the TRUE value. In our demonstration server this action
deletes the data file. When a user clicks on “Save data” a HTTP download is requested
from the server to download the file “/LTOS/output.csv”.

7.4 Flash network security policy file
Flash was designed to be very secure and impossible to use for writing a virus or other
malware. To that end, Flash attempts to connect to the server hosting the experiment data
to download a security policy file which Flash uses to know if it should allow further
connections. Flash attempts to connect on TCP port 843 and sends the string “<policy-
file-request/>” terminated by a NULL. The server should answer this request with a
policy file similar to this one:
 ���������
	���
�������������� ��� ����������� �!#"�$�%�&('�
)������*�+�����,�����*�-�������'�.0/�$�/1"�&�23��4�5�5�-7698�8�:�:�: � ,�+���;�� � '�����8�������8�+�5�+���8�'�
)������*�+�����,�����*-�������'�. � +�5�+��1���'�
)������*�+�����,�����*�-�������'�.��������5���*�'�����5�
)���(-���
)����5�5���+�*�'�
)������*�+�����,�����*�-�������'�������������,���5���
�*�������.��18����,������#:�*�,�'�'�������*�<�
)���=+�����,���������>��?5���*�-���
)5�������@�A�B�B��18����8�'�
)������*�+�����,�����*�-�������'�.��

The “to-ports” section would need to be modified to include the port you are using to host
the experiment data.

 - 13 -

7.5 A note about TCP/IP communication and firewalls
The LTOS client for our demonstration uses TCP ports 80, 843, and 3688. Ports 80 and
3688 could be changed to anything the site wishes to use but we’ve had limited success in
using a different port besides 843 for the Flash security policy file transfer.

Most organizations today employ a firewall to prevent outsider access to individual
computers on the network. If a site is intending to allow access from the Internet via the
LTOS client then they need to address opening these three ports in the firewall which is
often made in a request to the IT department serving the organization.

8 Future work
During the development of LTOS version 1.0 several ideas came about for future work.
Some of these ideas are to improve deficiencies in the current version and others are
ideas of things that would be beneficial to have some day.

1. Add parameters to the graph controls to change the filename used for saving, the
history length, graph size, and to control fixed scaling.

2. Add an authentication scheme between the Flash client and server (such as
requiring a password before allowing control).

3. Overcome local web browser caching of the graph’s saved file (currently the web
browser will sometimes ignore new data).

4. Modify the LabVIEW demonstration server so that the layout commands are send
from the shaker VI (using the buildLayoutCommand VI) instead of as a fixed
string from the server.

5. Create the ability to allow multiple clients to connect for viewing and for one
client at a time to be authorized to control the experiment.

6. Embed a video feed into the Flash client (possibly using ffmpeg and the Axis
video servers).

7. Develop a MATLAB/Simulink experiment server that communicates with LTOS.

9 Acknowledgements
This work was made possible by funding support from the National Science Foundation
through a sub-award to the Network for Earthquake Engineering Simulation (NEESinc).

