NEES at CU Boulder
01000110 01001000 01010100
CU-NEES-08-1 The George E Brown, Jr. Network for Earthquake Engineering Simulation

Report to NEESinc
Ref.: OMSA-2006-SSL-UCoB

Site Implementation and Evaluation of
OpenFresco and SIMCOR
at CU-NEES FHT Laboratory

by

Dr. Gary Haussmann
Technical Director

January 21, 2008

Department of Civil Environmental and Architectural Engineering
January 2008 University of Colorado

UCB 428
Boulder, Colorado 80309-0428

CONTENTS 1

Contents

CU-NEES-08-1 OpenFresco/UI-SIMCOR Localization

CONTENTS 2

Abstract

As part of ongoing activities to maintain and update the hybrid capabilities of the
CU-NEES site, two hybrid software tools were installed and configured to work with the
CU-NEES site-specific hardware. The two software tools, OpenFresco and SIMCOR , enable
distributed hybrid simulation and compatibility with other NEES sites. In order to provide
hard real-time hybrid capabilities several parts of the OpenFresco software framework were
modified or augmented. Hybrid tests performed for a variety of test set-ups and situations
were performed in conjuction with other NEES to check the functionality and correctness
of the hybrid test software.

CU-NEES-08-1 OpenFresco/UI-SIMCOR Localization

1 OBJECTIVE 3

1 Objective

This report documents the processes and activities involved with executing the plans present in
“Proposal for Site Implementation and Evaluation of OpenFresco and SIMCOR”. The original
proposal proposed installing, localizing, and testing the hybrid simulation toolkits OpenFresco
[2] and SIMCOR [3] at the CU-NEES site, making any changes or configuration needed for the
specific needs and equipment at CU-NEES . The intended end result of this effort is to make
both OpenFresco and SIMCOR available for performing hybrid simulation in addition to the
hybrid simulation software already present at the CU-NFEES site.

By making OpenFresco and SIMCOR available, the CU-NEES site expands its hybrid sim-
ulation capability to allow for interoperability with other NEES sites which also implement
OpenFresco and/or SIMCOR . Previously, the CU-NEES site has used heavily customized
software to enabled hard realtime hybrid simulation [7], and evaluated the possible used of
OpenFresco for fast and/or realtime hybrid testing [0, [I]. Compatibility and interoperability
with other NEES sites is a key motivation for replacing the custom software used at CU-NEES
with versions of OpenFresco and SIMCOR . However, in order to maintain the current realtime
capabilities of the CU-NEES site a new version of the custom hybrid simulation software used
at CU-NEES will be constructed based on OpenFresco software components. This customized
version of OpenFresco is specifically intended to satisfy the hard realtimeEl requirements cur-
rently imposed for realtime tests at CU-NEES while still maintaining compatibility with other
NFEES sites. While the current version of CU-NEES custom software supports realtime hybrid
testing, the custom software was not designed for use in distributed simulation and therefore
does not interoperate with the hybrid software used at other NEES sites.

2 Preparation of CU-NEES site

Several activities were performed in preparation for the localization effort. The software for
the MTS controller was upgraded to the most recent version. Several legacy computers were
replaced or upgraded. Up-to-date versions of Microsoft Visual Studio and Mathworks MATLAB
were installed. To replace the ETS Operating System used on the Real-time target, several
Real-time Operating Systems (RTOS) were examined including VxWorks, Blue Cat Lynux,
and Debian GNU/Linux with preemption patches.

3 Initial Installation and Testing of OpenFresco and SIMCOR

Initial installation of the software packages involved a fake hybrid test; instead of using an
actual physical specimen to generate responses a simple program is used as a stand-in for the
physical specimen, providing data values similar to those of an actual physical specimen. Once
this was accomplished, the specific details and possible modifications involved to perform a full
hybrid test at the CU-NEES site were examined.

Initial testing of OpenFresco first required obtaining copies of the relevant software. In
order to use the most up-to-date versions, source code for both OpenSEES and OpenFresco
were checked out of the development repositories. The versions used were Version 1.7.4 of
OpenSEES and Version 2.5 of OpenFresco . After the software was installed, the next step
involved getting a set of configuration files for example tests and using these configuration

'Hard real-time simulation imposes strict timing requirements of the software [4, 5] that are not provided by
OpenFresco running on standard operating systems

CU-NEES-08-1 OpenFresco/UI-SIMCOR Localization

4 INTEGRATION OF OPENFRESCO WITH PRODUCTION SYSTEM 4

files to run a local test (on one computer) or a distributed test (on two computers connected
by the internet). Using the provided instructions, running these example tests was fast and
straightforward, although it should be noted that the CU-NEFES site has had extensive previous
experience with OpenSEES and OpenFresco . A new user without much experience with the
TCL interpreter and command line interfaces may have problems understanding and modifying
the required input files. Specifically, users have to learn the basics of the TCL interpreter as
well as the multilayered architecture of OpenFresco . In addition, all the examples use numeric
identifiers to name various object instances, resulting in lines such as

expSetup OneActuator 1 -control 1 1

where the first “1” names the expSetup object, the second “1” is the name of the controller
to use, and the third “1” does not name an object but instead specifies which in direction the
controller operates. While this reflects the long legacy of earlier simulation tools which could
only use numbers to distinguish different nodes and elements, the use of numbers in this case
(and used in a similar manner by SIMCOR , where the modules can only be referred to by
number) is confusing and nonideal.

The initial testing of SIMCOR was performed by simply downloading the set of MATLAB
script files and some examples, and then running specific examples from MATLAB. Users
without much MATLAB experience may find the configuration and executing of SIMCOR
confusing, since it requires editing a MATLARB file, making the MATLAB current directory the
same as the configuration file, and then starting SIMCOR from within MATLAB. However,
once SIMCOR is initiated from MATLAB, the user interface is very intuitive.

4 Integration of OpenFresco with Production System

For both OpenFresco and SIMCOR validation tests, the local control method was chosen to be
OpenFresco , since the xPC-based OpenFresco module—which uses a MATLAB xPC real-time
operating system to run the module that drives the physical specimen (see figure [[)—provides
a good fit with the equipment setup at CU-NEES . The hardware and network configuration is
shown in figure [l The integration process was as follows:

1. In addition to the physical specimen and actuator controller/sensors, this setup required a
host computer to contain the main OpenFresco software and a target computer to contain
the xPC real-time environment.

2. The OpenFresco software application and associated files were downloaded from NEESforge
using the SubVersion version control system. By basing the local CU-NEES copy of the
software off the master copy at NEESforge, bug fixes and feature updates can be down-
loaded and integrated into the local CU copy fairly quickly.

3. The installation also required certain supplementary software needed to compile and run
OpenFresco , specifically: MATLAB/Simulink, MATLAB Real-time Workshop, MAT-
LAB/xPC Real-time environment, the MATLAB xPC development files, Microsoft Visual
Studio 2005, the TCL/TK interpreter, and several header files from OpenSEES .

CU-NEES-08-1 OpenFresco/UI-SIMCOR Localization

4 INTEGRATION OF OPENFRESCO WITH PRODUCTION SYSTEM

Either software program can talk to
the Site Server

°) ¢,
0, 4
A ER
0,) Ly Q &7
RN %
/%
RS 8 2
% R
% K
% S
%
®
Network to

" local/remote sites

Sy

OpenFresco

Site Server via
"startLabServer"
on Windows XP

Local ethernet network

OpenFresco
Poly3_Actl
Module on
MATLAB xPC

SCRAMnet network

MTS Actuator
Controller and DAQ
via SCRAMnet

Direct Hardline Wiring

Physical Specimen

Figure 1: Using an OpenFresco site
server to provide access to the physical

specimen

Upon finishing the setup a simple hybrid test was performed with actuators off to verify
that data flow was proceeding through the entire framework, from software analysis to MTS
controller. The simple test was performed using OpenSEES /OpenFresco running a modified
version of the OneBayFrame (figure 2]) example that is included in the OpenFresco framework.
In this test OpenSEES simulates a simple structure and interfaces with the physical specimen

via the OpenFresco Site Server.

A second test was run using SIMCOR as the coordinator and communicating with the
OpenFresco Site Server. The SIMCOR software includes a OpenFrescolD module which allows
it to interface with physical specimens via OpenFresco . Since the OpenFresco Site Server can
be accessed by both OpenFresco and SIMCOR it seems prudent to use the OpenFresco Site

4. The main OpenFresco software-the por-

tion used to configure the lab envi-
ronment and connect to other NEES
sites—was compiled using Microsoft Vi-
sual Studio. This produced a pro-
gram Openfresco.exe which was used
to run the various input files such as
OneBayFrame_Serverla.tcl.

. The OpenSEES xPC controller module

must be built in MATLAB/Simulink to
produce a controller that will run in the
xPC Real-time environment. This mod-
ule requires some modification based on
the configuration of the MTS controller
and the desired actuator(s) that are in-
stalled in the laboratory.

. The host system containing OpenFresco

required some change in order to make it
accessible to computers at other NEES
sites. Specifically, the host system re-
quires a static IP address as well as a
firewall exception so that remote sites
can connect to and communicate with
the host system.

Server as a favored setup at CU-NEES for distributed and non-realtime hybrid tests.

CU-NEES-08-1

OpenFresco/UI-SIMCOR . Localization

5 TESTING AND VALIDATION OF OPENFRESCO 6

Figure 2: The OneBayFrame example used for the bulk of the OpenFresco tests. The red
element is the substructure element which is linked to a physical specimen.

5 Testing and Validation of OpenFresco

In order to fully test out the functionalty of the OpenFresco components, a series of tests was
performed to exercise both the local and distributed hybrid testing capabilities of OpenFresco .
The structure and control configuration used for all tests in this section was the OneBayFrame
example provided in the OpenFresco software package, described in the appendix on page 271
The tests started out as a simple simulation, becoming progressively more complicated

(figure [)):

1. First was a local test involving OpenSEES and OpenFresco which was pure computational
analysis; that is, no actuator or physical lab was involved. Instead running lab equipment,
an OpenFresco SimUniaxialMaterial was used to model an elastic element.

2. Next was a local-only test involving the live actuator at CU-NEES . OpenSEES analyzes
a computational model and using OpenFresco as a client to connect to an OpenFresco
server running the xPCControl, which uses the xPC Real-time environment to interface
to a Physical Specimen.

3. Last was a distributed test involving Berkeley-NEES and CU-NEES At Berkeley-NEES
, OpenSEES performs the numerical analysis and uses OpenFresco as a client to connect
to an OpenFresco server at CU-NEES . At CU-NEES , an OpenFresco server runs the
OpenFresco xPCControl which uses the xPC Real-time environment to interface to a
Physical Specimen.

From a numerical analysis standpoint all three tests are equivalent and should produce
the same results. The three tests differ in the location where certain software runs (local or
distributed) and how the response force is generated (from computer code or actuator mea-
surements). Results show very good agreement between the three tests. A plot comparing the
Nodal displacement of the various tests is shown in figure [

The tests were performed with the help of Andreas Schellenberg and Catherine Whyte at
UC-Berkeley.

6 Testing and Validation of SIMCOR

In order to verify that the SIMCOR software installation could correctly run a simulation and
communicate with other sites as part of a distributed tests, we performed a set of three tests.

CU-NEES-08-1 OpenFresco/UI-SIMCOR Localization

6 TESTING AND VALIDATION OF SIMCOR 7

Local Numerical Analysis-Only Test

CU-NEES Site

CU-NEES Site

Berkeley NEES Site \ X CU-NEES Site

Figure 3: The three successive tests performed during OpenFresco Testing

CU-NEES-08-1 OpenFresco/UI-SIMCOR Localization

6 TESTING AND VALIDATION OF SIMCOR 8

0.8 T T
—— Simulation
+ + Local Live Test
0.6f ¥ x x Remote Live Test |1

Displacement, inches

0 5 10 15 20 25 30 35
Time, seconds

Figure 4: Comparison of simulation data from the three successive OpenFresco-based hybrid
tests

The tests started out as a simple simulation, becoming progressively more complicated:

1. A local test involving SIMCOR as pure simulation and analysis; that is, no actuator or
physical lab was involved. Instead running lab equipment, an OpenFresco SimUniaxial-
Material was used to model an elastic element.

2. A local test involving SIMCOR for integration and the OpenFresco xPCControl, which
uses the xPC Real-time environment to interface to a Physical Specimen.

3. A distributed test involving UIUC-NEES and CU-NEES At UIUC-NEES , SIMCOR
performs the integration and coordination. At CU-NEES , an OpenFresco server runs
the OpenFresco xPCControl which uses the xPC Real-time environment to interface to a
Physical Specimen (figure [6]).

From a numerical analysis standpoint all three tests are equivalent and should produce
the same results. The three tests differ in the location where certain software runs (local or
distributed) and how the response force is generated (from computer code or actuator measure-
ments).

In this case, the physical specimen was a large-scale hydraulic actuator in the CU-NEES
lab. Due to the impact on other projects taking place in the lab, a separate test rig was not
built up specifically for this test. Instead, the actuator in use for a concurrent experiment was
reconfigured and re-used. In lieu of an actual specimen to provide the measured force response,
a pseudo force was generated from the measured displacement and a predefined stiffness K.
This setup allowed us to maintain the equipment in-place for other tests taking place in the
lab, allowing for fairly quick setup and breakdown times involving the tests performed here.

CU-NEES-08-1 OpenFresco/UI-SIMCOR Localization

6 TESTING AND VALIDATION OF SIMCOR 9

Local Numerical Analysis-Only Test

CU-NEES Site

CU-NEES Site

UIUC NEES Site . ' CU-NEES Site

Figure 5: The three successive tests performed during SIMCOR testing.

CU-NEES-08-1 OpenFresco/UI-SIMCOR Localization

7 DISTRIBUTED MULTI-SITE TEST 10

1.0 ‘ ‘
—— Simulation
+ + Local Live Test
X _x Remote Live Test
0.5f
%]
(]
N
1)
£
i
3 0.0
2o
(O]
[9)
©
ey
0
[m}
-0.51
105 1 2 3 4 5

Time, seconds

Figure 6: Comparison of local and remote SIMCOR-based hybrid tests

The distributed test was performed as a joint test between UIUC-NEES and CU-NEES .
There were some initial problems establishing a connection between SIMCOR at UIUC and
the OpenFresco server at CU. These problems were exacerbated by the lack of or incorrect
diagnostic information. In one case, the SIMCOR module said it had connected to the CU
server when no network traffic from UIUC was arriving at the CU server. A better way to test,
start, and possibly restart the network connection for a distributed test is clearly desired.

The primary source of error is due to the displacement measurement; both noise and actuator
lag produce a measured displacementand thus a measured forcethat does not exactly match the
values produced by the ideal response provided by the SimUniaxialMaterial in OpenFresco .

The distributed test was performed with the help of Kyu-Sik Park at UITUC. We appreciate
his taking the time and effort to help CU with this test.

7 Distributed Multi-Site Test

As part of the localization project, a multi-site distributed test was conducted involving CU-
NEES | Lehigh-NEES | and the University of Connecticut. This test consisted of one site—
University of Connecticut (U-Conn)-that performed analysis using OpenSEES and communi-
cated with the CU-NEES and Lehigh-NEES sites via OpenFresco . Both the CU-NEES and
Lehigh- NEES applied displacement commands provided by U-Conn and supplied force feedback
values back to U-Conn.

The first attempt involving the three sites encountered problems due to apparent incom-
patibilites between OpenFresco versions. In short, CU-NEES was using OpenFresco version 2.5
while the other two sites were using OpenFresco version 2.0. The test was rescheduled for the
following week while version upgrades were performed.

CU-NEES-08-1 OpenFresco/UI-SIMCOR Localization

8 CONSTRUCTION OF A HARD REAL-TIME SYSTEM FOR HYBRID
TESTING 11

UConn Site
(Running OpenSEES/ -
Lehigh site ~ © - OpenfrescoClient) -) oo

(OpenFresco : . . (OpenFresco
Server) : :. . .. Server)

Figure 7: Schematic of the structure used in the multi-site test, illustrating what portion of the
test each site was responsible for.

On the second attempt, attempts to run a hybrid test would result in OpenSEES locking
up after running two or three timesteps. Use of network tools showed the network connection
between U-Conn and CU-NEES was being severed prematurely. Several network tests were
done and established that the Internet Protocol port 80 would not properly connect between
U-Conn and CU-NEES . After modifying the ports used, a successful distributed multi-site
simulation was performed. The test structure used was a two-story building based on the
OneBayFrame structure (figure [7). The results are shown in figure 8l The differences in nodal
displacement results between the local-only and distributed test can be attributed to errors
produced from the two physical specimens being tested.

The multi-site test was performed with the help of Tommy Marullo at Lehigh University
and Richard Christenson at University of Connecticut.

8 Construction of a Hard Real-Time System for Hybrid Testing

Although both OpenFresco and SIMCOR can perform distributed hybrid tests and in some
cases run fast enough to keep the physical specimen in near-constant motion, neither software
framework is currently capable of satisfying hard real-time constraints. Previously the CU-
NFEES site has used a heavily customized version of OpenSEES running on the ETS/Phar lap
real-time operating system (RTOS) to satisfy real-time constraints. As part of the effort to
install and test OpenFresco , we also proceeded to construct a hardware/software system to
replace the old ETS-based hard real-time system.
The construction of the new hard real-time system consists of several steps:

1. Replacing the old real-time computer with newer faster computer

CU-NEES-08-1 OpenFresco/UI-SIMCOR Localization

8 CONSTRUCTION OF A HARD REAL-TIME SYSTEM FOR HYBRID
TESTING 12

Multi-site validation
2.0 : . ‘

—— Local-only Simulation
—— Distributed Hybrid

15

1.0

o
n

.
o
U

Displacement (inches)
o
o

=
o

!

=

wu
T

4 6 8 10
Time (seconds)

N

o
o
~F

Figure 8: Comparing results from a local-only numerical test and a distributed multi-site test.

2. Replacing the ETS/Phar lap operating system with a modern RTOS

3. Modifying OpenSEES | OpenFresco to support hard real-time as a special case of the local
site configuration available in OpenFresco .

The replacement operating system consists of the Linux/GNU operating system, modi-
fied to provide real-time response. The default Linux kernel does not provide hard real-time
capability, but a set of modifications referred to as the Real-time preemption Patch, or CON-
FIG_PREEMPT_RT, provide a platform for running real-time processes in Linux:

The real-time preemption patch set seeks to provide deter-
ministic response times with a stock Linux kernel. It works
by making everything preemptable, including code (spinlock-
protected critical sections, interrupt handlers) which cannot
be preempted in current kernels.

The Linux Foundation Weather Forecast

By replacing the ETS/Phar lap RTOS with a preemptable Linux kernel, we also gain several
advantages, including:

e The original two-computer setup required by ETS/Phar lap is replaced by a single com-
puter. The developement system provided for the ETS RTOS required that simulation
software be written and built on one computer (the host) then downloaded to a second
computer (the target) where the actual software execution takes place. This new solution
requires only a single computer which acts as both host and target, takes up less lab space,
and removed many of the logistic problems associated with a host/target configuration.

CU-NEES-08-1 OpenFresco/UI-SIMCOR Localization

8 CONSTRUCTION OF A HARD REAL-TIME SYSTEM FOR HYBRID
TESTING 13

Original ECSCRAMNet Setup

(@)
(O’OQ
° %/0\%\ Physical
RN »| Specimen

A 4. I
Y 7 ! %
S et Control | o
Q/é ctuatorSetup '

Figure 9: Standard OpenFresco setup on the real-time system, using the interpolator module
as an intermediary.

e The ETS operating system maintained some compatibility with Microsoft Windows but
not enough to properly support the TCL interpreter that OpenSEES uses. To remedy this
problem a custom interpreter was written for the old system by CU-NEES which imitates
TCL closely but not exactly, which made compability with other sites difficult. The
new replacement system supports a full TCL interpreter under the Linux/GNU operating
system.

e By placing the simulation software on the same platform as the host, certain activities
such as debugging and visualization became much easier whereas with the host/target
configuration required by ETS these activities are often difficult and impractical.

Other than the preemptable kernel patch, in all the respects the computing system operates
as a standard desktop Linux computer, with typical file I/O and networking support and
graphics access via X windows. The SCRAMNet network is accessed using a SCRAMNet
SCI150E card, using the Linux drivers provided by SYSTRAN. Due to the special nature of the
real-time Linux kernel, the SYSTRAN drivers had to be modified slightly to correctly receive
interrupts from the SCRAMNet network. Specifically, the interrupt processing has to properly
receive and process the software interrupts generated by the RT kernel, whereas in a standard
kernel the interrupt can be assumed to come directly from the SCRAMnet card.

A further modification is required to reflect differences between the implicit hybrid algorithm
used at CU-NFEES and the standard integrators and hybrid method employed in OpenFresco

In particular, OpenFresco uses Alpha-Operator Splitting or Explicit Newmark integration
methods for the analysis, while using a interpolator and/or predictor/corrector module which
mediates data between OpenFresco and the actual Physical Specimen (see figure [).

In contrast, the integration method used at CU-NEES (Wei, 2005) incorporates the inter-
polation and correction into the main analysis cycle. Thus the interpolation module is not
required, and a modified ECSCRAMNet control is required to bypass the interpolator and gain
direct access to the Physical Specimen (figure [I0]).

The modifications described above required changes in several C++ source code files, specif-
ically:

e FCSCRAMNet.h and ECSCRAMnet.cpp were copied and modified to directly access
the MTS controller instead of using an intermediary; the modified object was renamed
ECSCRAMNetRaw to differentiate it from the standard SCRAMNet control.

CU-NEES-08-1 OpenFresco/UI-SIMCOR Localization

9 SUMMARY AND CONCLUSIONS 14

CU-NEES Site

Physical
o ECSCRAMNet H_
0,,((>ActuatorSetup

! Specimen

Figure 10: Customized OpenFresco setup on the real-time system, using a custom SCRAMNet
control and removing the interpolator module.

e A special solver object ImplicitShingSolver, based on the ModifiedNewton solver was added
which uses a fixed number of iterations and allows other objects to query it for the current
iteration.

e Experimental elements require additional code to use the iteration information provided
by ImplicitShingSolver in order to properly interpolate the target displacements. The
elements also need to perform force correction, factoring the displacement error into the
restoring force. For this project, two interpolating elements were created: EFEInterpolat-
ingTruss and EFEInterpolatingTwoNodeLink.

e The main analysis loop of OpenSEES along with the bulk of domain setup (i.e., definition
of nodes and elements) remain unchanged.

e Timing and synchronization are performed by a signal handler in the ECSCRAMNetRaw
control object. In practice, this functionality should be shunted off into a new class
designed for general purpose synchronization and timing.

A simple hybrid test was performed using this new realtime OpenFresco program, and
compared with test results using the old realtime hybrid software that has been used in previous
hybrid tests at CU-NFEES . Unfortunately, the older hybrid simulation software used at CU-
NEES uses different semantics and configuration parameters in the TCL file to setup and run a
hybrid test. Thus, one cannot take a TCL file used in a hybrid test using the old software and
simply input it into the new hybrid software; some modificatoins must be made to the input
file. In light of this, the test structure used was a simple beam, so that the test configuration
could be transferred between old and new hybrid software programs with a minimum of effort.
The structure is shown in figure [T} The test results of both old and new software programs are
shown in figure [[2] along with OpenSFEES non-hybrid results for context. The results between
old and new software programs are nearly identical, with some difference that can be accounted
for by measurement noise and rounding differences that occur in the two programs.

9 Summary and Conclusions

The tools OpenfFresco and SIMCOR , both software components used in conducting hybrid
tests for earthquake engineering, have been installed and configured at the CU-NEES site. Dis-

CU-NEES-08-1 OpenFresco/UI-SIMCOR Localization

9 SUMMARY AND CONCLUSIONS 15

Figure 11: The test structure used for comparing old and new real-time hybrid software.

1.0 T T T

Simulation: Newmark-Newton
o8l g + + OpenFresco-Realtime ,
x x Legacy Hybrid Software

A
b % 3
O 0.4f f{ %)‘g h
Ny
2 i Thed
= 0.2F i TP |
% E N A
£ { A
3 0.0 3
©
2 MBS
2 -0.2f i b 1
. & X X
&]
0.4} oy .
><
0.6} 3 1

08, 5 10 15 20 25 30

Time, seconds

Figure 12: Comparison of test results using both old (Legacy) and new (OpenFresco-Realtime)
hybrid test software programs, using numerical /non-hybrid results as a reference.

CU-NEES-08-1 OpenFresco/UI-SIMCOR Localization

9 SUMMARY AND CONCLUSIONS 16

tributed tests performed jointly with other NEES sites verify that the CU-NEES can participate
in a distributed hybrid test involving either or both software tools.

As part of the validation, a simple hybrid test was performed as both a local test (CU-
NEES site only) and a distributed test (CU and another, remote, NEES site). The results
show favorable comparisons between the local and distributed tests, for both OpenFresco and
SIMCOR . In addition, several parts of OpenSEES and OpenFresco were modified to enable the
use of OpenFresco in hybrid tests involving hard real-time constraints and using the implicit
Shing method for hybrid simulation.

Overall, both SIMCOR and OpenFresco were able to perform a distributed hybrid test
correctly and capably, coupling analysis and measurements into a full hybrid simulation.

Based on the distributed tests using both SIMCOR and OpenFresco , an urgent need for
better diagnostic feedback is needed. There were frequent occurrences where, during an attempt
to run a distributed simulation, the simulation simply stopped with no warning or information,
due to a bad network connection, protocol mismatch, or sundry other networking-related errors.
Both SIMCOR and OpenFresco would be much more useful if they would recognize network
errors and provide information to the software users.

In order to perform hard realtime hybrid testing, OpenSEES and OpenFresco were exten-
sively modified to run on a realtime operating system and take advantage of the realtime
aspects of that operating system. Additional modifications were performed to synchronize with
the timing provided MTS controller and to directly access the data parameters of the MTS
controller.

In order to provide more general realtime support certain aspects of OpenFresco would
require extension and enhancements. These include:

e Support for timing of the test, which would allow different experimental controls (local
and remote) to synchronize their operations. The current implementation of OpenFresco
synchronizes the hybrid simulation implicitly by waiting for response data from each
control serially. Support for asynchronously waiting on all participating controls would
reduce the overall waiting time. Also, the timing implicit in various controls could be
made more configurable in order to provide more control over timing and delays within
the simulation data flow.

e The interface for experimental elements, sites, and controls currently provide data flow
for physical quantities such as displacement, velocity, and force. Information about the
simulation time is also important, especially for realtime tests, and the interface should
make quantities such as simulation time, timestep, and iteration (if any) available. In the
case of CU-NFEES , the iteration and timestep are needed by the experimental element to
properly interpolate the command values for realtime simulation. Even in a non realtime
context, certain controls such as the xPC experimental control require a timestep value,
which is stored in a configuration file separate from the main simulation configuration.

Finally, both projects could benefit from more documentation elaborating on how they
interact with other applications, which would benefit users trying to integrate these projects
with their own software. For example, a sequence diagram detailing how OpenFresco fits into
the standard integrator and analysis process of OpenSEES would serve as a useful example
when trying to integrate it into a custom finite-element tool.

This Report was made possible with funding support from the National Science Founda-
tion under Cooperative Agreement No. CMMI-0402490 and George E. Brown, Jr. Network for

CU-NEES-08-1 OpenFresco/UI-SIMCOR Localization

REFERENCES 17

Earthquake Engineering Simulation Incorporated (NEESinc) under the Operations and Main-
tenance Subaward Agreement OMSA-2006-SSL-UCoB.

References

[1] Gary Haussmann. Evaluation of openfresco and simcor for fast hybrid single site simulation.
2007. CU NEES Number CU-NEES-07-2.

[2] Openfresco: Framework for experimental setup and control.
http://neesforge.nees.org/projects/openfresco/.

[3] Simulation coordinator for distributed hybrid = simulation and = testing.
http://neesforge.nees.org/projects/simcor/.

[4] John Stankovic. Misconceptions about real-time computing. IEEE Computer, 10 October
1988.

[5] John Stankovic. Deadline scheduling for real-time systems: EDF and related algoritms.
Klewer Academic Publishers, 1998.

[6] Eric Stauffer. Assessment of opensees for use in realtime and fast hybrid testing. CU NEES
Number CU-NEES-07-1, 1 January 2007.

[7] Zhong Wei. Fast Hybrid Test System for Substructure FEvaluation. PhD thesis, University
of Colorado, Boulder, 2005.

A OpenFresco and SIMCOR Initial Validation: OneBayFrame
Example Client

File: OneBayFrame_Clientl.tcl
(use with OneBayFrame_Serverla.tcl & OneBayFrame_Serverlb.tcl)

$Revision: $
$Date: $
SURL: $

Written: Andreas Schellenberg (andreas.schellenberg@gmz.net)
Created: 11/06
Revision: A

Purpose: this file contains the tcl input to perform

a local hybrid simulation of a one bay frame with

two experimental zero length elements.

The specimens are simulated wusing the SimUniazxialMaterials
controller.

KRR KRR IR KRR R R IHR RN

#

CU-NEES-08-1 OpenFresco/UI-SIMCOR Localization

A OPENFRESCO AND SIMCOR INITIAL VALIDATION: ONEBAYFRAME
EXAMPLE CLIENT 18

Start of model generation
#
create ModelBuilder (with two—dimensions and 2 DOF/node)
model BasicBuilder —ndm 2 —ndf 2

Load OpenFresco package
#

(make sure all dlls are in the same folder as openSees.exe)
loadPackage OpenFresco

Define geometry for model
#
set mass3 0.04
set mass4 0.02
node $tag $xCrd $yCrd $mass

node 1 0.0 0.00
node 2 100.0 0.00
node 3 0.0 54.00 —mass $mass3 $mass3
node 4 100.0 54.00 —mass $mass4 $mass4

set the boundary conditions
fix $tag $DX $DY

fix 1 1 1

fix 2 1 1

fix 3 0 1

fix 4 0 1

Define materials

#
uniaxialMaterial Elastic 3 [expr 2.0%x100.0/1.0]

Define experimental site

#

expSite RemoteSite $tag <—setup $setupTag> $ipAddr $ipPort <
$dataSize>

expSite RemoteSite 1 7127.0.0.1” 8090

expSite RemoteSite 2 7128.138.228.117”7 80

Define experimental elements

#

left and right columns

expFElement twoNodeLink $eleTag $iNode $jNode —dir $dirs —site
$siteTag —initStif $Kij <—orient $z1 $z22 $z38 $yl $y2 $y3> <—iMod>
<—mass $nm>

expElement twoNodeLink 1 1 3 —dir 2 —site 1 —initStif 2.8 —orient 0
10 -100

expElement twoNodeLink 2 2 4 —dir 2 —site 2 —initStif 5.6 —orient 0
10 -100

CU-NEES-08-1 OpenFresco/UI-SIMCOR Localization

A OPENFRESCO AND SIMCOR INITIAL VALIDATION: ONEBAYFRAME
EXAMPLE CLIENT 19

Define numerical elements
#
spring

element truss $eleTag $iNode $jNode $A $matTag
element truss 3 3 4 1.0 3

Define dynamic loads

#

set time series to be passed to uniform excitation

set dt 0.02

set scale 0.2

set accelSeries "Path.—filePath_elcentro.txt._.—dt_$dt_—factor.[expr.
386.1x3$scale]”

create UniformFExzcitation load pattern
pattern UniformExcitation $tag $dir
pattern UniformExcitation 1 1 —accel $accelSeries

calculate the rayleigh damping factors for mnodes & elements
set alphaM 1.010017396536 ; # D = alphaMxM

set betaK 0.0; # D = betaKxKcurrent

set betaKinit 0.0; # D = beatKinitxKinit

set betaKcomm 0.0 ; # D = betaKcommxKlastCommit

set the rayleigh damping
rayleigh $alphaM $betaK $betaKinit $betaKcomm:;

#
End of model generation

#

#

Start of analysis generation

#

create the system of equations
system BandGeneral

create the DOF numberer
numberer Plain

create the constraint handler
constraints Plain

create the convergence test
test Energylncr 1.0e—6 10

CU-NEES-08-1 OpenFresco/UI-SIMCOR Localization

A OPENFRESCO AND SIMCOR INITIAL VALIDATION: ONEBAYFRAME
EXAMPLE CLIENT 20

create the integration scheme
integrator NewmarkExplicit 0.5
#integrator AlphaOS 1.0

create the solution algorithm
algorithm Linear

create the analysis object
analysis Transient

#

End of analysis generation

#

#

Start of recorder generation
#
create the recorder objects

recorder Node —file Node_Dsp.out —time —node 3 4 —dof 1 disp
recorder Node —file Node_Vel.out —time —node 3 4 —dof 1 vel
recorder Node —file Node_Acc.out —time —node 3 4 —dof 1 accel

recorder Element —file Elmt_Frc.out —time —ele 1 2 3 forces

recorder Element —file Elmt_tDef.out —time —ele 1 2
targetDisplacements

recorder Element —file Elmt_mDef.out —time —ele 1 2
measuredDisplacements

#

End of recorder generation

#

#
Finally perform the analysis

#
perform an eigenvalue analysis
set pi 3.14159265358979
set lambda [eigen 1]
puts "\nEigenvalues._at_start_of_transient:”
puts ”lambda........_ OMNEZA e period”
foreach lambda $lambda {
set omega [expr pow($lambda,0.5)]
set period [expr 2x3$pi/pow($lambda,0.5)]
puts ”$lambda.._$omega._$period._\n"}

open output file for writing
set outFileID [open elapsedTime.txt w]|
perform the transient analysis

CU-NEES-08-1 OpenFresco/UI-SIMCOR Localization

B MULTI-SITE TEST: CONFIGURATION FILE FOR TWO-STORY
STRUCTURE 21

set tTot [time {
for {set i 1} {$i < 1600} {incr i} {
set t [time {analyze 1 $dt}]
puts $outFileID $t

}
1
puts ”Elapsed _.Time_.=_$tTot._\n”
close the output file
close $outFilelD

wipe
#
End of analysis
#

B Multi-site Test: Configuration File for Two-Story Structure

File: Testla_Distr_client.tcl
#

Written: Cheng Chen

Created: Sept 17 2007

Revision: A

#
Start of model generation

#
create ModelBuilder (with weo—dimensions and 3 DOF/node)
model BasicBuilder —ndm 2 —ndf 3

Load OpenFresco package
#

(make sure all dlls are in the same folder as openSees.exe)
loadPackage OpenFresco

Define geometry for model
#
set massO 1.866
set massl 5.982
set mass2 4.116

node $tag $xCrd $yCrd $mass

node 1 0.0 0.0 —mass $massO $mass0O 0.0
node 2 0.0 144.0 —mass $massl $massl 0.0
node 3 0.0 288.0 —mass $mass2 $mass2 0.0
node 4 360.0 0.0 —mass $massO $mass0O 0.0
node 5 360.0 144.0 —mass $massl $massl 0.0

CU-NEES-08-1 OpenFresco/UI-SIMCOR Localization

B MULTI-SITE TEST: CONFIGURATION FILE FOR TWO-STORY
STRUCTURE 22

node 6 360.0 288.0 —mass $mass2 $mass2 0.0

set the boundary conditions
fix $tag $DX $DY $RZ

fix 1 1
fix
fix
fix
fix
fix

S O i W N =
O O O O
= s e

1
1
1
1
1

Define materials

#

uniazialMaterial Steel02 $matTag $Fy $E $b $RO $cRI1 $cR2 $al $a2
$a3 $a4

uniaxialMaterial Elastic 1 505

Define experimental site

#

expSite RemoteSite $tag <—setup $setupTag> $ipAddr $ipPort <
$dataSize>

expSite RemoteSite 1 7128.138.228.117” 990

expSite RemoteSite 2 7128.180.53.37 8092

geometric transformation
geoTransf type $tag
geomTransf Linear 10

Define experimental elements

#
left and right columns

Define numerical elements

#

Define element

expElement $eleTag $iNode $jNode $transTag —site $siteTag
—initStif $Kij <—iMod> <—rho $rho>
element elasticBeamColumn 1 1 2 91.4 29000 4330 10

element elasticBeamColumn $eleTag $iNode $jNode $A $FE $1z
$transTag

expElement beamColumn 2 2 3 10 —site 1 —initStif 18407 0 0 0 505
—36334 0 —36334 3488056

expElement $eleTag $iNode $jNode $transTag —site $siteTag
—initStif $Kij <—iMod> <—rho $rho>

CU-NEES-08-1 OpenFresco/UI-SIMCOR Localization

B MULTI-SITE TEST: CONFIGURATION FILE FOR TWO-STORY
STRUCTURE 23

expElement beamColumn 3 4 5 10 —site 2 —initStif 18407 0 0 0 505
—36334 0 —36334 3488056

element elasticBeamColumn 4 5 6 91.4 29000 4330 10
element elasticBeamColumn 5 2 5 44.2 29000 9040 10
element elasticBeamColumn 6 3 6 44.2 29000 9040 10

Define dynamic loads

#

set time series to be passed to uniform excitation

set dt 0.01

set scale 1.0

set accelSeries "Path.—filePath_ ELC270.txt .—dt_$dt.—factor.[expr.386
.1x$scale|”

Get Initial Stiffness
#

#initialize

create UniformFExcitation load pattern
pattern UniformExcitation $tag $dir
pattern UniformExcitation 11 1 —accel $accelSeries

Define damping
rayleigh $alphaM $betaK $betaKinit $betaKcomm
rayleigh 0.18289 0 0.0017984 0

#

End of model generation

#

#

Start of recorder generation

#

create the recorder objects

recorder Node —file Node_Dsp.out —time —node 1 2 3 4 5 6 —dof 1 disp

recorder Node —file Node_Vel.out —time —node 1 2 3 4 5 6 —dof 1 vel

recorder Node —file Node_Acc.out —time —node 1 2 3 4 5 6 —dof 1
accel

recorder Element —file Elmt_Frc.out —time —ele 1 2 3 4 5 6 force

recorder Element —file Elmt_Def.out —time —ele 1 2 3 4 5 6
deformation

#

End of recorder generation

#

CU-NEES-08-1 OpenFresco/UI-SIMCOR Localization

B MULTI-SITE TEST: CONFIGURATION FILE FOR TWO-STORY
STRUCTURE 24

#

Start of analysis generation

#

create the system of equations
system BandGeneral

create the DOF numberer
numberer Plain

create the constraint handler
constraints Plain

create the convergence test
test Energylncr 1.0e—6 10

create the integration scheme
integrator NewmarkExplicit 0.5

create the integration algorithm
algorithm Linear

create the analysis object
analysis Transient

#

End of analysis generation

#

#
Finally perform the analysis
#
set pi 3.14159265358979
set lambda [eigen 2]
puts "\nEigenvalues_at_start_of_transient:”
puts ”._.__lambda\t.._omega\t___period”
foreach lambda $lambda {
set omega [expr pow($lambda,0.5)]
set period [expr 2x3$pi/pow($lambda,0.5)]
puts ”$lambda._$omega._$period”

}

open output file for writing

set outFileID [open elapseTime.txt w]

perform the transient analysis

set tTot [time {

for {set i 1} {$i<4000} {incr i} {

set t [time {analyze 1 $dt}]
puts $outFileID $t
puts ”step._number_$i”

H

CU-NEES-08-1 OpenFresco/UI-SIMCOR Localization

C REALTIME VALIDATION: CONFIGURATION FILE FOR OLD
REALTIME SOFTWARE 25

puts ”Elapsed_Time_.=_.$tTot._\n”

close the output file
close $outFilelD

wipe
#
End of analysis
#

C Realtime Validation: Configuration file for old realtime soft-
ware

#

Test example wusing a single beam, for testing/validation purposes.

#

model BasicBuilder —ndf 3 —mndm 2
#loadPackage OpenFresco
define a few mnodes. We need only three, two for the cantilever

and a third for the
"reaction wall”

node # z Y

node 1 0.0 0.0

node 2 0.0 156.0

node 3 50.0 156.0

nodal mass

node # zMass yMass RotMass
mass 2 1.0 1.0 0.0001
boundary conditions

type node # constrain: x? y? rot?
fix 1 1 1 1
fix 3 1 1 1

specify steel material properties
uniaxialMaterial Steel0l 1 50 29000 le—6

uniaxialMaterial Elastic 2 5.6

CU-NEES-08-1 OpenFresco/UI-SIMCOR Localization

C REALTIME VALIDATION: CONFIGURATION FILE FOR OLD
REALTIME SOFTWARE 26

geomTransf Linear 1

cantilever

ele# Nodel NodeJ A E 1
Transform

element elasticBeamColumn 1 1 2 75.6 29000 3400
1

#

hybrid elements

#

element sNodeElement 11 2 1 1 1 1 1 1 5.6 00 0 5.6 000 5.6 10
0010O0O0T1 100010001

pattern UniformExcitation 1 1 —accel ”Path.—filePath_elcentro.txt.
—dt.0.01_—factor.386.4"

calculate the rayleigh damping factors for mnodes & elements
set alphaM 1.010017396536 ; # D = alphaMxM

set betaK 0.0; # D = betaKxKcurrent

set betaKinit 0.0; # D = beatKinitxKinit

set betaKcomm 0.0 ; # D = betaKcommxKlastCommit

set the rayleigh damping
rayleigh $alphaM $betaK $betaKinit $betaKcomm:;

#
integrator FHT 0.5 0.25 0.065722 0.0 0.0 0.00062806

recorder Node —file SingleBeam _disp_HybridTest_old.out —time —node 2
—dof 1 2 3 disp

#recorder FElement —file Target_disp_ HybridTest.out —time —ele 2
targetDisplacements

test Energylncr 1.0e—20 20 3

#algorithm Newton

#algorithm ImplicitShingSolver —count 10
algorithm FHT

numberer Plain
system BandGeneral

#analysis Transient
analysis FHT

CU-NEES-08-1 OpenFresco/UI-SIMCOR Localization

D REALTIME VALIDATION: CONFIGURATION FILE FOR NEW
REALTIME SOFTWARE 27

analyze 3000 0.01

D Realtime Validation: Configuration file for new realtime soft-
ware

#

Test example wusing a single beam, for testing/validation purposes.

#

model BasicBuilder —ndf 3 —ndm 2
loadPackage OpenFresco
define a few mnodes. We need only three, two for the cantilever

and a third for the
"reaction wall”

node # z Y

node 1 0.0 0.0

node 2 0.0 156 .0

node 3 50.0 156 .0

nodal mass

node # zMass yMass RotMass
mass 2 1.0 1.0 0.0001
boundary conditions

type node # constrain: x? y? rot?
fix 1 1 1 1
fix 3 1 1 1

specify steel material properties
uniaxialMaterial Steel0l 1 50 29000 le—6

uniaxialMaterial Elastic 2 5.6

geomTransf Linear 1

cantilever
ele# Nodel NodeJ A E 1
Transform

CU-NEES-08-1 OpenFresco/UI-SIMCOR Localization

D REALTIME VALIDATION: CONFIGURATION FILE FOR NEW

REALTIME SOFTWARE 28
element elasticBeamColumn 1 1 2 75.6 29000 3400
1
#
hybrid elements
#
#

OpenFresco elements

expControl SCRAMNetRaw 1 8 3

#expControl SimUniaxialMaterials 1 2

expSetup OneActuator 1 —control 1 1

expSite LocalSite 1 1

expFElement twoNodeLink $eleTag $iNode $jNode —dir $dirs —site
$siteTag —initStif $Kij <—orient $z1 $z22 $z38 $yl $y2 $y3> <—iMod>
<—mass $m>

expElement interptwoNodeLink 2 2 3 —dir 2 —site 1 —initStif 5.6
—orient 0 1 0 —1 0 O

#element sNodeFElement 11 5 1 1 1 1 1 1 181.19 0 4135.88 0 967.65 0
4135.83 0 204128.4 1 0 0 0 —0.5 —0.5 0 0.01389 —0.01389 1 0 0 0
—1 86 0 —1 —36

pattern UniformExcitation 1 1 —accel ”Path_—filePath_elcentro.txt.
—dt.0.01_—factor.386.4"

calculate the rayleigh damping factors for mnodes & elements
set alphaM 1.010017396536 ; # D = alphaM+M

set betaK 0.0; # D = betaKxKcurrent

set betaKinit 0.0; # D = beatKinitxKinit

set betaKcomm 0.0 ; # D = betaKcommxKlastCommit

o O O

set the rayleigh damping
rayleigh $alphaM $betaK $betaKinit $betaKcomm:;

#
integrator Newmark 0.5 0.25

#integrator HHT 0.5
#integrator FHT 0.5 0.25 0.65722 0.0 0.0 0.00062806

recorder Node —file SingleBeam disp HybridTest.out —time —node 2
—dof 1 2 3 disp

recorder Element —file Target_disp_.HybridTest.out —time —ele 2
targetDisplacements

test Energylncr 1.0e—20 20 3

#algorithm Newton

CU-NEES-08-1 OpenFresco/UI-SIMCOR Localization

D REALTIME VALIDATION: CONFIGURATION FILE FOR NEW
REALTIME SOFTWARE 29

algorithm ImplicitShingSolver —count 10
#algorithm FHT

numberer Plain
system BandGeneral

analysis Transient
#analysis FHT

analyze 3000 0.01

CU-NEES-08-1 OpenFresco/UI-SIMCOR Localization

	1 Objective
	2 Preparation of CU-NEES site
	3 Initial Installation and Testing of OpenFresco and SIMCOR
	4 Integration of OpenFresco with Production System
	5 Testing and Validation of OpenFresco
	6 Testing and Validation of SIMCOR
	7 Distributed Multi-Site Test
	8 Construction of a Hard Real-Time System for Hybrid Testing
	9 Summary and Conclusions
	A OpenFresco and SIMCOR Initial Validation: OneBayFrame Example Client
	B Multi-site Test: Configuration File for Two-Story Structure
	C Realtime Validation: Configuration file for old realtime software
	D Realtime Validation: Configuration file for new realtime software

