NEES at CU Boulder
01000110 01001000 01010100

The George E Brown, Jr. Network for Earthquake Engineering Simulation
CU-NEES-06-7 g a gineering

Hybrid Simulation

Hardware Interface

by
Dr. Gary Haussmann

Software Engineer

Department of Civil Environmental and Architectural Engineering
September 2006 University of Colorado

UCB 428
Boulder, Colorado 80309-0428




CONTENTS 1
Contents

1 Overview 1
2 Installation 1
3 Scramnet Functionality 2
4 Hybrid Simulation 2
5 Using Scramnet for Hybrid Simulation 2
6 The scramnetobject Interface 2
7 Typical Scramnet Usage 5
8 Cross-platform Initializer and State 5
9 Initializating and Accessing the Scramnet Object 7
10 Reading and Writing Scramnet Shared-Memory 7
11 Handling Scramnet Interrupts 8
12 The Actuator Interface 9
13 The FEM Elements 9

CU-NEES-06-07 Hybrid Simulation Hardware Interface



1. OVERVIEW 2

1 Overview

The Scramble library is a set of software interfaces for use with the Scramnet Shared-Memory
Network

2 Installation

The HSHI software is available from NEESForge at neesforge.nees.org/projects/scramble. From
there, you can download and compile the software library:

1. You must have the Software Configuration Management tool “Subversion”” to access the
source code files for HSHI; Subversion is available from subversion.tigris.org. A Windows
client is available at tortoisesvn.tigris.org

2. You can get the relevant files by ”checking out” the current source code as the user
”anonymous”. From the command line, this would be done as:
svn checkout https://scm.neesforge.nees.org/svn/scramble if you are using the
TortoiseSVN windows client you would instead right click in the windows explorer, select
SVN Checkout and enter the relevant URL and module ”scramble” into the relevant fields.

3. Once you have the source code, you can include the project file scram_hybrid into your
solution. Once you modify your project to have a dependency on the scram_hybrid project,
you will be able to access functions and classes in the HSHI library.

3 Scramnet Functionality

The Scramnet Shared-Memory Network works by using a shared-memory space on multiple
computers. Each computer contains a scramnet card, and is connected to the other computers,
typically using fiber optic cable.

When data in the shared-memory space is modified by any computer, the scramnet protocol
will communicate that modification to the other computers. Thus, the shared-memory area will
appear to contain the same data on every computer in the scramnet network.

The main advantage of sending data between computers using scramnet is guaranteed la-
tency: upon modifying memory one computer, the data is sent to all the other computers within
a specific, short, time window. By contrast, many networking protocols such as ethernet do
not have any guarantee that the data is sent in a specific amount of time, or even that the data
will be sent at all. For hybrid simulations, especially real-time, or scaled-real-time simulations,
the transmission and updating of data is typically required to occur on very short guaranteed
timeframes.

4 Hybrid Simulation

Hybrid simulation here refers to the simulation of an event by combining both software com-
putation and actual lab mechanisms/measurements. The specific example here is simulating
the vibration of a simple structure. In this example, part of the simulation is performed using
a Finite-Element model in computer software. Certain quantities of the FE model (such as
displacement and/or force) are coupled to an actual physical structure. This coupling of the
software model and physical model produce a combined simulation or so-called hybrid of the
process or event that we wish to describe, Fig.refScramble-Illol.

CU-NEES-06-07 Hybrid Simulation Hardware Interface



4. HYBRID SIMULATION 3

Numerical Model Physical Model

B 3
N/

Combined Hybrid Simulation

Figure 1: Hybrid simulation combines experimental tests and numerical simulation

CU-NEES-06-07 Hybrid Simulation Hardware Interface



5. USING SCRAMNET FOR HYBRID SIMULATION 4

5 Using Scramnet for Hybrid Simulation

The scramnet network allows you to couple together multiple computers with guaranteed la-
tency. In a typical hybrid simulation one computer will perform the software computation while
another computer drives and measures the physical model. These two computers are coupled
together using the scramnet network; more computers can also be connected via scramnet in
order to process the simulation results for storage or visualization.

6 The scramnetobject Interface

The scramnetobject interface provides almost direct access to the scramnet hardware. The
scramnet hardware is abstracted into a class scramnetobject which provides the following func-
tionality, Fig. 2:

1. Automatic initialization, which resets the card and checks for connectivity errors.
2. Access to read and write the shared-memory area and the control registers (CSRs).

3. Processing and routing of interrupts. You can specify a certain function to be called when
an interrupt occurs for a specific memory location.

7 Typical Scramnet Usage
Typical usage consists of several steps:

1. Construct a scramnetobject.
2. Initialize the object using startscramnet.

3. Add interrupt handlers for the memory locations for which you want to handle interrupts,
using addMemoryHandler to specify the function which will be called when an interrupt
occurs.

4. Enable interrupt processing for particular memory locations using enableMemorylnter-
ruptAt.

5. Enable interrupt processing using interrupt_enable.

6. Begin reading and writing shared-memory data using writeSharedMem and readShared-
Mem.

An example of typical C++ code:

scramnetobject scram;

if (!scram.startscramnet())

{
aborttest("could not initialize scramnet hardware");
return O;

CU-NEES-06-07 Hybrid Simulation Hardware Interface



7. TYPICAL SCRAMNET USAGE 5

Application
J A
A
Actuator Interface
A
A /
scramnetobject
A

y
Low-level Scramnet Interface

Figure 2: Diagram of interactions between SCRAMnet Software components and your applica-
tion

CU-NEES-06-07 Hybrid Simulation Hardware Interface



8. CROSS-PLATFORM INITIALIZER AND STATE 6

// put in an interrupt handler for location 252
scram.addMemoryHandler (252, InterruptHandler);

// turn on interrupts for that location and in general
scram.enableMemoryInterruptAt (252,false,true);
if (!scram.interrupt_enable())
{
aborttest("can’t enable interrupts");
return O;

8 Cross-platform Initializer and State

Internally the scramnetobject uses two objects, the ScramnetInitializer and ScramnetState ob-
jects; the relationship between these classes and the scramnetobject is shown in Fig. 3. These
objects represent internal state and their actual implementation is dependent on the comput-
ing platform on which the library is compiled. Therefore, when you see an instance of these
classes be aware that you cannot make any assumptions about what data or functionality is
stored within those objects, since the class declaration and internal implementation can change
drastically when you switch to a different computing platform (for instance, switching from a
Windows OS to the ETS embedded system).

9 Initializating and Accessing the Scramnet Object

The scramnetobject is created by constructing it, either explicitly using new/delete or by cre-
ating a local variable in your main function.
Typical code for manual creation and deletion:

int main(int argc, char *argv[]) {
scramnetobject *scram = new scramnetobject;
if (!scram->startscramnet())
{

// error code here...

}
// code here to access scramnet...
scram—>writeSharedMem(0, datavaluel);

delete scram;

typical code for automatic creation and deletion:

int main(int argc, char * argv[]) {
scramnetobject scram;
if (!scram.startscramnet())

{

CU-NEES-06-07 Hybrid Simulation Hardware Interface



9. INITIALIZATING AND ACCESSING THE SCRAMNET OBJECT 7

scramnetobject ScramnetlInitializer
tHstartscramnet(initializer) -<platform-dependent initializers>
rrreadCSR(csrindex)

rwriteCSR(csrindex)
rrreadSharedMem(address)

|-
rrwriteSharedMem(address) =
rraddMemoryHandler(address, handler)
rrenableMemoryInterruptAt(address)
<<contains>>

ScramnetState

~<platform-dependent state>

Figure 3: The scramnetobjeciclass refers to platform-specific version of the initializer and state
classes.

CU-NEES-06-07 Hybrid Simulation Hardware Interface



10 READING AND WRITING SCRAMNET SHARED-MEMORY 8

// error!
return O;

// use scramnet object...
float datavaluel = scram.readSharedMem(23);

// the scramnet object will be automatically
// destroyed here, at the of the end of the function

If at any point in your program you need to access the scramnet object, you can acquire a
pointer to it via the getScramnetObject() function:

scramnetobject *scram = scramnetobject::getScramnetObject();
scram—>writeSharedMem (102, 1.5f);

10 Reading and Writing Scramnet Shared-Memory

To read and write from specific locations in the Scramnet shared-memory space, you can use
the methods readSharedMem and writeSharedMem. The first parameter to both functions is
the memory address, which represents a location in the Scramnet shared memory space. The
address range starts at zero and goes up to the size of the memory installed on the Scramnet
hardware. Addresses are in bytes, so if you are reading and writing four-byte data (such as
single-precision floating point values) you will be using addresses that are a multiple of four
such as 0,4,8, etc.

For reading and writing you can use numbers represented as either floating-point values or
integers. Both will be written using the native machine format for these numbers, which is
typically big-endian 32-bit integers and ITEEE Standard floating-point representations. Note
that if, for example, you write out a value as an integer and read it back from the same location
as a floating-point number you will usually get garbage or a different value. For each location
in Scramnet shared-memory you should decide ahead of time which number type (integer or
floating-point) will be stored there.

scram->writeSharedMemory (12, 3); // write integer 3 to location 12
scram->writeSharedMemory (24, 3.0f); // write floating-point 3 to
location 24 int x = scram->readSharedMemory(24); // x is an integer,
which does not

// match the format previously writen to

// location 24!

// x will probably have a garbage value in it

11 Handling Scramnet Interrupts

The Scramnet hardware can generate interrupts whenever a particular memory location is
modified, possibly by another computer on the Scramnet network. This allows you to write
functions that respond to memory updates in certain memory locations. For instance, you may
be drawing a graph of the data values in Scramnet memory and want to redraw the graph every

CU-NEES-06-07 Hybrid Simulation Hardware Interface



12 THE ACTUATOR INTERFACE 9

time those values change. In this case you can specify a function to call every time the data at
a specific location is changed. However, you must also enable interrupts, which is a two-step
process. You must enable interrupts for the specific memory location(s) that will trigger an
interrupt, and you must turn on the switch that enable or disables ALL interrupts generated
by the Scramnet card.

void myinterruptfunction(UINT32 memorylocation) {
// code to update/redraw goes here
// the memorylocation is passed in so that you can have
// one function handle interrupts for multiple memory locations

//

// .. in your startup code ...

//

scram->addMemoryHandler (104, myfunction) ;
scram->enableMemoryInterruptAt (104, false, true);
scram->interrupt_enable();

// at this point the function "myfunction" will be called
// every time another computer modifies Scramnet memory
// at location 104

12 The Actuator Interface

TBA

13 The FEM Elements

TBA

CU-NEES-06-07 Hybrid Simulation Hardware Interface



	1 Overview
	2 Installation
	3 Scramnet Functionality
	4 Hybrid Simulation
	5 Using Scramnet for Hybrid Simulation
	6 The scramnetobject Interface
	7 Typical Scramnet Usage
	8 Cross-platform Initializer and State
	9 Initializating and Accessing the Scramnet Object
	10 Reading and Writing Scramnet Shared-Memory
	11 Handling Scramnet Interrupts
	12 The Actuator Interface
	13 The FEM Elements

