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Abstract

As part of ongoing research at the CU-Boulder Fast Hybrid Testing laboratory, new
methods are examined which can improve the hybrid testing process. One such method
involves the use of a Field-Programmable Gate-Array (FPGA) which is capable of per-
forming simulation computations on hundreds of degrees-of-freedom (DOFs), enabling the
simulation of extremely complicated structures. While the current PC-based simulation
platform used at CU-Boulder for FHT tests is capable of analyzing a structure with dozens
of degrees-of-freedom at a real-time rate of 1024Hz, the FPGA can analyze many more
degrees-of-freedom (hundreds) at a much higher rate (40MHz). The key issue with perform-
ing simulations on the FPGA is the lack of floating-point arithmetic on the FPGA, which
has the potential to severely reduce the accuracy of a Fast Hybrid Test.

This report examines the degradation of accuracy that occurs when a hybrid simulation
performs its measurement and computation using fixed-point arithmetic instead of the more
common floating-point arithmetic typically used in simulation computation. The implemen-
tation of a fixed-point simulation is discussed, and the subsequent reduction in precision
that occurs due to fixed-point rounding errors is quantified and compared against the more
precise floating-point simulation. A calibration process is described for minimizing fixed-
point error, and a comparison of this error with other errors in the hybrid simulation is
provided.
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1 Background and Motivation

This report examines the impact of fixed-point computation when use in a hybrid structural
dynamics simulation. While the use of a Field-Programmable Gate-Array (FPGA) holds
the potential for modeling much larger and complicated structures, the lack of floating-point
computation on the FPGA needs to be addressed. Errors are introduced when the normal
floating-point computations are replaced with related fixed-point arithmetic. This study
aims to quantify fixed-point error, determine what effect various models and measurement
methods have on the fixed-point error, and possibly determine what techniques can be used
to mitigate the errors introduced by the introduction of fixed-point arithmetic. Specifically,
we will determine what calibration process is required for the FPGA to produce the highest
fidelity model for structural simulation, and fast hybrid simulation in particular. Also, the
fixed-point error is compared to other sources of error in the hybrid simulation to aid in
determining viable targets for improving accuracy.

1.1 Definitions and Concepts

Hybrid Simulation A hybrid simulation combines both numerical computation (a com-
puter model) and a physical specimen. During a hybrid simulation, data from the
computer model is used to influence the physical test specimen and vice-versa. Typi-
cally the computer is used to model parts of a structure that are impractical to build,
while the physical specimen is used to represent components that are difficult to model
correctly on a computer.

Field Programmable Gate-Array (FPGA) An FPGA is an integrated circuit device
(chip) with internal circuitry that can be re-routed and re-programmed. In the same
way that modern computer chips can run different software programs, the FPGA can
be programmed with different digital configurations in order to mimic the behavior of
various kinds of circuits. An FPGA programmed to perform structural simulation can
perform computations many times faster than an equivalent computer CPU, stemming
from the hardware-based nature of the FPGA. An FPGA limitation relevant to this
report is that computations on an FPGA are performed using fixed-point arithmetic
instead of floating-point.

Fixed-point Arithmetic Numerical computation on modern computing devices use floating-

point arithmetic, which is able to accurately represent a large range of values, from
the very large to the very small. However, floating-point computations use a relatively
complicated data representation and require extra work for re-normalization after each
computation. In contrast, a fixed-point computation is much simpler and faster than
floating-point, but cannot represent as large of a range of values.

1.2 Motivation and Goals

A key advantage to using the FPGA for simulation computation is speed; while the FPGA
clock speed is only 40MHz, it can perform a large number of simultaneous computations
on each clock tick. In addition, the FPGA does not need to transfer data off-chip to
RAM memory, thus avoiding the latency slowdown that a traditional CPU would see when
modifying or updating digital data.

The primary disadvantage to using the FPGA is the loss in accuracy inherent in the use
of fixed-point data quantities. The analog I/O on the FPGA board is limited to signed 16-
bit quantities, and internal FPGA computation is typically done in fixed-point arithmetic.
Nevertheless, with proper techniques an FPGA-based computation can possibly approach
the accuracy of a traditional CPU-based computation.

In addition, in a hybrid simulation the interface to the physical specimen is also a key
source of error. Data transferred between the computation model and the physical specimen
suffers from errors due to both measurement quantization and nonideal actuator control. It
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is important to quantify the error due to fixed-point computation so it can be compared to
other measurement errors present in the hybrid simulation.

1.3 Process and Deliverables

The process of examining the effects of fixed-point math involves using an FPGA to perform
the fixed-point calculations. The process of quantifying these effects proceeds in three steps,
or phases:

• Phase One (Initial Testing and Validation) consists of verifying that basic function-
ality of the FPGA and the computer system that hosts and programs the FPGA.
Functionality for this phase consists of properly accessing data on the SCRAMNet
network and manipulating/displaying it via the FPGA. The SCRAMNet card is a
deterministic network that enables real-time transfer of data between the simulation
computer(s) and the instrumentation system that manipulates/measures the physical
specimen. The SCRAMNet network, with its high bandwidth and guaranteed data
delivery, is a vital part of fast-hybrid testing at CU-Boulder.

• Phase Two (Single DOF Simulation Model) is intended to provide a simple framework
upon which various precision and accuracy tests can be performed. To this end, the
FPGA will be programmed to properly model a single degree-of-freedom structural
dynamics problem, similar to those used in the CU-Boulder Fast Hybrid Test (FHT)
production system. The fixed-point simulation model will be examined for general
correctness, but no quantifying of the error is done in this phase.

• Phase Three, the final phase, will consist of quantifying the precision problems inherent
in fixed-point, and how they may be mitigated with normalization. Also, the overall
simulation correctness will be quantified by performing and comparing two hybrid
simulations, one with fixed-point and one with floating-point computations, using the
same single degree-of-freedom model developed in Phase Two.

2 Initial Testing and Validation

The initial testing had three goals:

• Verifying the FPGA can be controlled and reprogrammed remotely from a computer
running Microsoft Windows

• Verifying several simple LabView “programs” by running them on the FPGA and
using them to produce analog outputs on the FPGA I/O lines.

• Verify that the FPGA can access data values on the ScramNET network, by controlling
an external voltage based on values from the ScramNET network.

The deliverable of this inital (Phase One) test was a completed system that used the
FPGA to generate analog waveforms based on data read from the SCRAMNet network–see
figure 1. The waveform is generated on a separate computer connected to the SCRAMNet
network, and the FPGA analog output is verified for correctness via oscilloscope.

In this case, the FPGA is programmed with minimal logic. The FPGA is configured to
accept a fixed-point value from the CPU and generate an analog voltage output that can
be measured (figure 1(b)).

2.1 Results

After implementing the described components, a test run was performed by generating a
sinusoid waveform on the remote PC platform and writing waveform values to the SCRAM-
Net. Waveform samples were written at a rate of 1024 samples/second, corresponding too
the standard sample rate of data produced by the MTS measurement system. The writing
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3 SINGLE DOF COMPUTATION MODEL 5

(a) Data Flow for Phase One (b) FPGA Logic for Phase One

Figure 1: Data flow and logic for Phase One Electronics

of data generates an interrupt on the SCRAMNet network which is picked up by the CPU,
triggering it to read the SCRAMNet data and transfer that data to the FPGA.

The CPU/FPGA combination was observed to correctly read data from the SCRAMNet
and generated a sinusoidal voltage waveform on the FPGA analog output, as observed by
an oscilloscope. Further stress-testing of the data rate was then done by programming
another computer on the SCRAMNet network to inject data at a rate faster than 1024Hz.
Rates up to 1MHz were observed to perform correctly; faster sample rates could not be
verified since the analog outputs from the FPGA card cannot run any faster than 1 million
samples/second.

In the interest of performance testing, further tests were done to determine how fast data
values can be transferred across the SCRAMNet network and relayed to the FPGA. This was
done by increasing the rate of the waveform samples written to SCRAMNet, and increasing
processing intervals in appropriate parts of the CPU and FPGA logic. As a result, we
succeeded in transferring up to 20,000 data samples per second from the remote PC system,
which the FPGA used to synthesize waveforms. The limiting factor at this point was the
speed at which the remote PC could generate and write data values to the SCRAMNet
network. Theoretical peak performance of the FPGA is processing one sample per clock
tick, or 40 million samples/second; however, once more complicated logic is programmed
into the FPGA it will conceivably require more than one clock tick to process and analyze
the data.

3 Single DOF Computation Model

The second phase consisted of constructing a single degree-of-freedom computational model.
This model will be used as the example simulation which will be normalized and reformu-
lated to demonstrate improved accuracy. The model used is that of a single degree-of-
freemdom spring/mass/damper system, illustrated in figure 2. The computational sim-
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3 SINGLE DOF COMPUTATION MODEL 6

Figure 2: Single Degree-of-freedom Model Used in Phase Two Computations

ulation is performed purely using fixed-point mathematics; the fractional portion of the
fixed-point representation is varied to observe its effect on the simulation accuracy.

The equation of motion for this system is

Mẍ + Cẋ + Kx = f(t) (1)

where M , K, and C are constants and f(t) is set to zero. The initial conditions are
x(0) = 1, ẋ(0) = 0. Solving for x, the closed-form solution is that of a damped oscillator,
with the form of the solution depending on the value of the damping ratio ζ = C

2
√

KM
:

x(t) = e−γt(c1cos(ωt) + c2sin(ωt)) for ζ < 1

x(t) = c1e
−γt + c2te

−γt for ζ = 1

x(t) = c1e
−γ1t + c2e

−γ2t for ζ > 1

where we define the constants

γ =
C

2M

ω0 =
√

K/M

ω =
√

ω2
0 − γ2

γ1 = γ + ω

γ2 = γ − ω

A primary source of error with the use of fixed-point is the limited dynamic range; the
allowed ratio of highest to lowest values is on the order of 10−3. For example, if 10 is
the largest possible value represented in a three-digit fixed-point representation, then any
value smaller than 0.01 is considered to be zero in fixed-point. By contrast, a floating-point
representation could easily handle values much smaller, down to at least 10−5 and possibly
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4 QUANTIFYING HYBRID SIMULATION ERRORS 7

smaller values. The limited dynamic range poses a problem since explicit integration meth-
ods typically need a very small value of ∆t in order to remain stable. As an example, the
update equation for the central-difference scheme:

di+1 =
∆t2(fi − ri) + 2Mdi −

(

M + ∆t
2

C
)

di−1

M + δt
2
C

(2)

contains a ∆t2 term applied to the acceleration. For a value of ∆t = 0.01, the size of
the acceleration is thus scaled by ∆t2 = 0.0001, which requires at least 10 fractional bits
in a fixed-point representation. If the value of f − Kx is less than one–a fairly common
occurrence–then the acceleration quantity will be rounded down to zero, and thus any
acceleration that would have occurred on that timestep is lost.

A possible solution to the rounding problem for small ∆t is to store different state
variables during the iterative solution procedure. In the above formulation (equation 2) the
state variables are di+1, di, and di−1; another possible method uses different state variables,
namely di, di−1, and vi. This “velocity-based” formulation has the advantage of avoiding
the use of ∆t2 which is the primary source of rounding error in the displacement-based
method shown in equation 2. A velocity-based formulation computes both displacement
and velocity each timestep:

vi =
di−di−1

∆t
+ ∆t

2M
(fi − ri)

1 + ∆tC
2

(3)

di+1 = di−1 + 2 ∆t vi (4)

This velocity-based formulation apparently suffers from fewer rounding problems: with
equivalent M, K, and C values the velocity-based version will produce a proper oscilla-
tion where the displacement-based simulation produces only zeros (figure 3). Due to the
improved results produced by the velocity-based formulation, tests in phase three use the
velocity-based formulations for quantifying simulation error.

4 Quantifying Hybrid Simulation Errors

In an effort to measure the errors generated due to fixed-point error, a single degree-of-
freedom simulation was performed and compared to the ideal analytical solution. The
system used for this comparison is the mass/spring/damper system show in figure 2.

Graphs comparing the simulation results and floating-point results are shown in figures
4, 5, and 6. In all cases the fixed-point simulation shows good accuracy, capturing both the
overall behavior and small-scale details that are seen in the equivalent floating-point simu-
lation. As the model displacement and velocity damp down to values near zero, rounding
errors begin to effect the fixed-point simulation causing it to diverge from the floating-point
simulation.

Finally, figure 7 shows the error of the fixed-point simulation by considering the floating-
point solution as the “exact” solution. The average error of the fixed-point simulation for
the various system types is illustrated in table 1. In general, the average error is of the
same order as the rounding error of single-precision floating-point numbers, although the
maximum error is much larger than this quantity. Also, the error in later parts of the
simulation appear systemic, converging toward a single quantity (−0.0005) for all system
types, which can be traced and corrected.

5 Calibration Process for Accurate Hybrid Simulation

The calibration process is intended to reduce error introduced in to the hybrid simulation
due to the inaccuracy of fixed-point computation. Based on the above computation results,
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5 CALIBRATION PROCESS FOR ACCURATE HYBRID SIMULATION 8

(a) Displacement-based simulation

(b) Equivalent Velocity-based simulation

Figure 3: Comparison of displacement- and velocity-based fixed-point simulations

System Type M K C Average Error

Underdamped 1 1 0.5 2.150 × 10−6

Critically damped 1 1 2 1.80 × 10−6

Overdamped 1 1 4 1.67 × 10−6

Table 1: Average Error For Different Oscillator System Types
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Figure 4: Overdamped system: fixed-point computation vs. floating-point solution

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25  30  35  40

N
or

m
al

iz
ed

 a
m

pl
itu

de

Time (seconds)

Fixed-point simulation
Floating-point simulation

Figure 5: Underdamped system: fixed-point computation vs. floating-point solution
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Figure 6: Critically damped system: fixed-point computation vs. floating-point solution
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Figure 7: Error values vs. time for fixed-point simulation of different system types
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Figure 8: Fixed-point simulation error values vs. time for various values of ∆t

the calibration process i dependent on the model and physical specimen used in the hybrid
simulation.

5.1 Choice of Time Step

The value of ∆t has an impact because it limits the dynamic range of values in the simula-
tion, due to its presence as both a multiplier and divisor in equation 2. The dynamic range
is reduced as ∆t becomes smaller or larger than one, thus ∆t should be chosen as close to
one as possible. However, the value of ∆t is predefined in many hybrid simulations, and is
typically tied to the timing constraints of instrumentation used. Thus, the limit imposed
by choice ∆t cannot typically be mitigated due to physical constraints. Figure 8 shows the
errors produced for the single-DOF simulation when different values of ∆t are used; the
error as the value of ∆t decreases.

5.2 Choice of constants K and M

The other primary determinant are the values of K and M ; like ∆t, the values of K and
M reduce dynamic range when they are much smaller or larger than unity. The range
reduction can be mitigated by scaling the displacements with ω0; in this case, the quantities
(di · ω0) are computed and stored instead of di. As a result, the dynamic range is limited
by

√

K/M instead of K and M ; however, even in this case the dynamic range will still
be reduced. The renormalization of K and M to make them closer to one by appropriate
choice of units will still produce a dynamic range larger than simply scaling by ω0. An
example of unnormalized K and M is shown in figure 9 where the values of K and M are
made progressively larger and eventually reach the fixed-point range limit.

5.3 Choice of fixed-point fractional bits

In any fixed-point simulation, the representation of numbers requires bits to represent both
the fractional and integer portions. In any representation, using more bits for the fractional
part will result in less bits being available for the integer part, and vice-versa. In order
to allow for the most bits to be available to the fractional part, the allowed integer range
should be made as small as possible. The number of bits needed for the integer part is
related to the maximum integer by
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Figure 9: Fixed-point simulation error values vs. time for various values of K and M
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Figure 10: Fixed-point simulation compared to floating-point for various fractional bit sizes

bits = log2(max int) (5)

Thus, the maximum required integer value must be predicted via simulation or other
method and use to determine the number of bits required for the integer portion of the
fixed-point representation. Figure 10 shows the change in simulation results as the number
of fractional bits is changed.

6 Computation Speed and Limits

As part of the FPGA investigate research the performance limits of the FPGA were ex-
amined to determine their capabilities. The capabilities here are examined in two parts:
computation speed and model size.
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6.1 Computation Speed

For the FPGA, computational speed is primarily dependent on signal delay. As data from
one operation (an add, subtract, or multiply) is produced, it takes some non-zero amount
of time for that data to travel to the next piece of logic which then performs some other
operation on the data. The delay is dependent on several factors, such as the interconnect
used and the distance that the signal must travel on the chip.

For the hybrid model performed here, the relevant delay is the delay between when
a new state di+1, vi+1 is computed from the previous state di, vi. The “compiler” that
generates logic configurations for the FPGA can estimate the worst-case delay and report
it. For a single-DOF fixed-point system, the delay for the main loop is 23.740nS, which
allows for a maximum theoretical update rate of 40.42MHz. However, this maximum speed
is reduced by instrumentation I/O; the on-board I/O pins have a settle time of 1uS allowing
for maximum update rate of 1MHz, and the inherent delays in SCRAMnet are in the
hundreds of nS, limiting the update rate to the hundreds of kHz.

Also, is is important to note that modal analysis of linear elastic systems results in
models where the modes are fully decoupled. In such an analysis with fully decoupled
modes, each mode is totally independent and the system is fully parallelizable. This full
parallelization means that adding more modes to the model neither increases the delay nor
slows down the maximum update rate.

6.2 Logic Real Estate

Although speed is not a large constraint on the size of models that can be represented, the
amount of available chip space is certainly a constraint. Each additional degree of freedom
requires logic gates and wiring on the FPGA, which consumes space or “real estate” on the
FPGA. Thus, the limit to larger models occurs when there is no more space available on
the FPGA. Possible solutions include using a larger FPGA, breaking the model into smaller
parts, and updating multiple DOFs with each operator instead of just one.

To quantify this restriction somewhat, several models were built with varying numbers
of DOFs, and the percentage of chip space used was recorded. These numbers are shown in
table 2; projections suggest that the XC2V3000 FPGA can update several hundred degrees-
of-freedom 40 million times per second.

DOFs Logic Blocks Percent of Chip

4 2340 16

16 2908 20

24 3036 21

32 3224 22

48 3378 23

64 4136 28

Projected sizes:

200 7614 53

400 12884 90

450 14201 99

Table 2: FPGA Chip Space Used For Various Simulation Sizes (Degrees-of-Freedom). The
larger DOF sizes are extrapolated from smaller sizes. The FPGA used here is the XC2V3000,
a Xilinx Virtex 2 with 3M available logic blocks

It should be noted that these numbers are for a basic simulation model where the various
DOFs are fully decoupled and all responses are linear, which is typical for modal analysis of

CU-NEES-06-05 Fixed-Point Arithmetic & Hybrid Simulation Accuracy



7 CONCLUSION 14

linear elastic models. The amount of chip space used by each DOF is greater if either inter-
DOF coupling or nonlinear responses are added, which would reduce the overall number of
DOFs the the FPGA could support at any one time.

7 Conclusion

This report has examined the effect of using fixed-point arithmetic for the simulation portion
of a Fast Hybrid Test. It is clearly evident that the use of an FPGA using fixed-point
arithmetic provides a dramatic increase in computation speed and size compared to that of
a standard CPU.

The impact of fixed-point computation on simulation accuracy is shown to be no worse
than standard floating-point if a proper number of fractional bits is used, and the numeric
quantities are kept near unity. However, for particularly large or small number values
the fixed-point representation produces a large error amount that can cripple overall test
accuracy if not corrected or mitigated somehow. Typical methods of correcting this error
involve re-scaling the simulation constants so that simulation values are closer to one.
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Appendix: Parameters and Configuration Used For Sim-

ulation

For the simulation comparing the effect of changing ∆t the model was a single-DOF dy-
namics system with the following parameters:

∆t = 0.1, 0.05, 0.01

K = 1

M = 1

C = 0.3

f(t) = 0

x(0) = 1

ẋ(0) = 0

bits = 16

The simulation comparing the effect of changing K and M used a model of a single-DOF
dynamics system with the following parameters:

K = 1, 100, 1000

M = 1, 100, 1000

C = 1, 100, 1000

f(t) = 0

x(0) = 1

ẋ(0) = 0

∆t = 0.05

bits = 16

For the simulation comparing the effect of changing the number of fractional bits, the
model was a single-DOF dynamics system with the following parameters:

bits = 8, 10, 12, 14, 16

K = 1

M = 1

C = 1

f(t) = 0

x(0) = 1

ẋ(0) = 0

∆t = 0.05
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