
Draft

CU-NEES-06-3

NEES at CU Boulder

The George E Brown, Jr. Network for Earthquake Engineering Simulation

01000110 01001000 01010100

The CU-Boulder Fast Hybrid Test

Desktop Platform

by

Dr. Gary Haussmann

Software Engineer

Department of Civil Environmental and Architectural Engineering

June 2006 University of Colorado
UCB 428

Boulder, Colorado 80309-0428

Draft1 INTRODUCTION 1

Figure 1: Desktop Platform

1 Introduction

While the CU-Boulder NEES site has implemented a complete FHT solution, the high cost and
effort involved in setting up and running an FHT test may prohibitive for certain applications,
including:

• Live demonstration of the FHT method in offsite locations.

• Interactive experiments or classroom presentations.

• Fast prototyping of new engineering ideas or concepts

To address these problems, a high performance desktop platform for realtime hybrid simu-
lation is being developed at CU NEES. The hardware and software requirements will provide
basic FHT functionality with relatively lower cost and more portability than full-scale hybrid
test sites.

2 Overview

The desktop platform includes a full implementation of the fast hybrid method used in the
CU production FHT test lab. A multiple-DOF simulation analyzes the structure while the
actuators and instruments (available using LabView VI modules) drive the test specimen and
inject measurements back into the simulation, Fig. 2. The simulation method uses an implicit
scheme for stability and an iterative solution method to handle nonlinear responses.

The simulation and instrumentation are handled by a single computer platform, called the
target platform. The target platform uses a real-time operating system to insure a deterministic
response for the hybrid test. The target platform sends simulation state and other information
over a network to a second computer, called the host computer. The host computer runs a
constantly updated visualization to show the states of the simulation structure for debugging
and demonstration. The host platform also allows for user interaction to start and stop the
simulation, and reconfigure the instrumentation as accessed in LabView.

This system is composed of the following:

Hardware

• Two personal computers

CU-NEES-06-03 CU-Boulder Desktop Fast Hybrid Test

Draft3 HARDWARE DESCRIPTION 2

Figure 2: LabView Framework for the Desktop Platform System

• One multifunction DAQ board

• One or more actuators (each with a force and displacement measurement sensor)

• One test structure

Software

• National Instruments Labview & Real-time module

• Custom Realtime Hybrid Simulation Block or VI to be used in LabView

• Graphical user interface to facilitate an working understanding of what is happening
during a realtime hybrid simulation.

3 Hardware Description

The FHT Desktop system includes:

• Two personal computers

• One multifunction DAQ board

• One or more actuators (each with a force and displacement measurement sensor)

• One test structure

The two personal computers are used for simulation and user interface; one computer is used for
simulation/instrumentation and the other is used for graphical display and user control. The
two computers are connected using an Ethernet connection, which is used to transfer simulation
data between the two computers. The first computer, the simulation computer, contains a real-
time operating system which executes the structural dynamics simulation and also manipulates
the physical specimen using actuators and displacement/force measurements, Fig. 3.

CU-NEES-06-03 CU-Boulder Desktop Fast Hybrid Test

Draft4 SOFTWARE DESCRIPTION 3

 MS-Windows
Computer

Ethernet

Computer with
Real-time OS

Shaking
Table

Measurement Simulation
Display and
Control

Instruments

Figure 3: Hardware for the Desktop Platform

The simulation and manipulation are performed in real time, meaning that a complete
simulation step and instrument reading happens every millisecond, without the delays or lag
that may occur in a non-real-time environment. The results of simulation and measurement are
transferred to a separately running program on the first computer which communicates with
the second computer over an Ethernet network.

The second computer holds the program used for graphical display and user interaction.
The current simulation state is displayed on this computer, as well as graphs and/or plots
representing the physical specimen.

4 Software Description

The two computer platforms contain three separate computing processes among them. The
first computing process is the real-time simulation/measurement process, which runs on the
first computer and simulates the structure and interacts with the physical specimen. The
second computing process also runs on the first computer and communicates directly with the
real-time simulation process. This second computing process then sends data over the network
to the third computing process which is used for graphical display and user interaction.

The simulation process is a finite-element simulation built on the second-order dynamics
equation written in terms of the time-varying state, x, v and a:

Ma + s(v) + r(x) = f (1)

Where M is the mass matrix, s(v) is the damping force, r(x) is the restorative force, and
f is the excitation or external force. Here the quantity M is assumed constant and frequency-
independent, while the damping force s(x) and restorative force r(x) are either general nonlinear
functions, or linear responses of the form

s(v) = Cv (2)

r(x) = Kx (3)

where C and K are matrices representing the stiffness and damping matrices.
The equilibrium equations are discretized for a given timestep ti

Mai + si + ri = fi (4)

CU-NEES-06-03 CU-Boulder Desktop Fast Hybrid Test

Draft4 SOFTWARE DESCRIPTION 4

Figure 4: Software Configuration

CU-NEES-06-03 CU-Boulder Desktop Fast Hybrid Test

Draft4 SOFTWARE DESCRIPTION 5

The Fast Hybrid Testing (FHT) method at CU-Boulder uses a modified version of the alpha
method, an implicit scheme, to compute the state variables for timestep ti+1

Mai+1 = (1 + α)fi+1 − αfi − C [(1 + α)vi+1 + αvi] − (1 + α)ri+1 + αri (5)

di+1 = di + ∆tvi + ∆t2
[(

1

2
− β

)

ai + βai+1

]

(6)

vi+1 = vi + ∆t [(1 − γ) ai + γai+1] (7)

If the restorative force is completely linear, i.e., r(x) = Kx then the quantities for the next
time step can be solved directly. However, if the restorative force is nonlinear, which occurs in
a hybrid test, then the solution must be found by using iteration.

In a nonlinear simulation, the quantities di+1 and ri+1 are solved using iteration. The
explicit quantity

M̃d̂i+1 = M̃

[

di + ∆tvi + ∆t2
(

1

2
− β

)

ai

]

+∆t2β
[

(1 + α)fi+1 − α(fi − ri) − C(vi − ∆t(1 + α)(1 − γ)ai

]

(8)

is computed, where M̃ = M +∆tγ(1+α)C, and the quantities di+1 and ri+1 are then computed
iteratively. These quantities at the next iteration k + 1 are expressed in terms of values at the
previous iteration k:

∆rk
i+1 =

[

M̃dk
i+1 − M̃d̂i+1 + ∆t2β(1 + α)rk

i+1

]

(9)

∆dk
i+1 = K∗−1∆rk

i+1 (10)

dk+1
i+1 = dk

i+1 + ∆dk
i+1 (11)

rk+1
i+1 = rk

i+1 + ∆rk
i+1 (12)

Here the tangent stiffness K∗ represents the secant stiffness quantity; for a simulation this is
computed, but for fast hybrid testing this value represents the stiffness of the physical specimen,
which is typically not fully characterized. Therefore, for a FHT experiment the initial stiffness
K of the test specimen is used.

For a hybrid test, the physical specimen must be integrated into the iteration and integration
process. The FHT method shown here uses three quantities dC , dM , rM to bridge the gap
between computer simulation and physical experiment:

1. The command displacement dC is produced by the simulation and used as a command
signal to the actuator on the physical specimen

2. The feedback displacement dM is measured on the physical specimen and transferred back
to the simulation software.

3. The feedback force rM is measured on the physical specimen and transferred back to the
simulation software.

Thus during a hybrid experiment the iteration update process becomes

∆dk
i+1 = K∗−1

[

M̃dk
i+1 − M̃d̂i+1 + ∆t2β(1 + α)rk

i+1

]

(13)

d
C(k+1)
i+1 = dk+1

i+1 = dk
i+1 + ∆dk

i+1 (14)

rk+1
i+1 = r

M(k+1)
i+1 + K∗

(

d
C(k+1)
i+1 − d

M(k+1)
i+1

)

(15)

where the iteration process has been updated to included the command displacement dC that
is sent to the physical actuator, and the measured feedback represented by dM and rM .

CU-NEES-06-03 CU-Boulder Desktop Fast Hybrid Test

Draft5 COMPARISON AND VALIDATION 6

5 Comparison and Validation

Of key importance is the requirement that the FHT desktop produce simulation results resem-
bling or identical to the simulations of the production system. Without a close correspondence,
prototypes developed on the FHT desktop would not behave correctly when transferred over to
the production system. In order to verify the correctness and resemblance of the FHT desktop
and the production FHT system, two representative dynamics problems were simulated on both
FHT systems and compare for differences.

(a) Case 1 (b) Case 2

Figure 5: Models Used for Simulation Validation

In both validation cases, the structure was simulated using an implicit alpha method for
transient analysis, and the displacements at various locations were compared between the two
simulation programs. In all cases, the difference in displacement values between the two pro-
grams was at or slightly larger than error explained by machine rounding error.

5.1 Single Cantilever Problem

The first problem used for validation was the simplest possible: a single cantilever, represented
by an elastic beam fully constrained at one end. An excitation force is applied to the free end
of the cantilever with the waveshape of a single frequency sinusoid. The model configuration
is shown in figure 5(a) and the simulation results, displaying x-axis displacements, are show in
figure 6.

5.2 Braced Single-Bay Problem

The second problem examined for validation purposes was a single-bay structure composed of
beam elements, with a single bracing truss element (figure 5(b)) and the same excitation force
as was used in the previous validation. It should be noted that the use of a non-zero beta
value for Rayleigh damping produced an unexplained instability in OpenSEES, so the Rayleigh
damping for this model uses different coefficients than Case 1. The displacement results are
shown in figure 7.

CU-NEES-06-03 CU-Boulder Desktop Fast Hybrid Test

Draft5.2 Braced Single-Bay Problem 7

-0.015

-0.01

-0.005

 0

 0.005

 0.01

 0.015

 0 2 4 6 8 10

OpenSees Node2 DOF 0
FHT Desktop, Node2 DOF 0

Figure 6: Displacement results for Case 1 simulation

-0.0015

-0.001

-0.0005

 0

 0.0005

 0.001

 0.0015

 0 2 4 6 8 10

OpenSees Node2 DOF 0
FHT Desktop, Node2 DOF 0

Figure 7: Displacement results for Case 2 simulation

CU-NEES-06-03 CU-Boulder Desktop Fast Hybrid Test

Draft6 CONCLUSION AND SUMMARY 8

6 Conclusion and Summary

The two computer platforms contain three separate computing processes among them. The
first computing process is the real-time simulation/measurement process, which runs on the
first computer and simulates the structure and interacts with the physical specimen. The
second computing process also runs on the first computer and communicates directly with the
real-time simulation process. This second computing process then sends data over the network
to the third computing process which is used for graphical display and user interaction.

The FHT Desktop Platform provides a low-cost easily deployable implementation of the
Fast Hybrid Test method. The small size and easy accessibility make the platform useful for
outreach demonstrations and pedagogical purposes. Also, low cost and short setup times allow
the platform to be used for prototyping of larger-scale FHT experiments.

7 Acknowledgements

The technical support of Dr. Eric Stauffer (CU-NEES Technical Director), and the financial
support of the University of Colorado Chancellor’s Fund for CU-NEES are gratefully acknowl-
edged.

8 Appendix: Validation Case Information

Enclosed in this appendix are the text/code sequences used to generate the validation models.
OpenSEES models are written in TCL, while FHT models are constructed using C++.

8.1 Validation Case 1

OpenSEES construction:

#

modified 7-26-2006

#

Test Case #1: Single column 3dof

#

model BasicBuilder -ndm 2 -ndf 3 node 1 0 0 node 2 0 156.0

fix 1 1 1 1

geomTransf PDelta 1

element elasticBeamColumn 1 1 2 75.6 29000 3400 1 mass 2 0.1 0.1 0.1

system UmfPack constraints Plain

algorithm Linear

numberer RCM

integrator Newmark 0.5 0.25 0.4503 0.0 0.0023 0.0

analysis Transient

CU-NEES-06-03 CU-Boulder Desktop Fast Hybrid Test

Draft8.1 Validation Case 1 9

time start stop period

set SineTimeSeries "Sine 0.0 50.0 3.14159"

set XAmp 1

set YAmp 0

set ZAmp 0

#Apply sine varying force at node 2

pattern Plain 1 $SineTimeSeries {;

load 2 $XAmp $YAmp $ZAmp;

}

recorder Node -file case1node2disp.out -time -node 2 -dof 1 2 3 disp

recorder Node -file case1node1acc.out -time -node 2 -dof 1 2 3 accel

FHT desktop construction:

FENode p1(1,0,0), p2(2,0,156);

p1.constrainDOF(0);

p1.constrainDOF(1);

p1.constrainDOF(2);

p2.addMass(0,0.1);

p2.addMass(1,0.1);

domain.addNode(p1);

domain.addNode(p2);

FEElement *e1;

e1 = new FE2DFrame(1, 29e3, 75.6, 3400);

e1->setEndpoints(p1.getID(), p2.getID());

domain.addElement(e1);

stiffnessmatrix msm,ktt, mass, damper;

domain.assembleMatrices(msm, ktt, mass, damper);

// build the dynamics

const double alpha = 0.0;

const double beta = 0.25 * (1-alpha)*(1-alpha);

const double gamma = 0.5 - alpha;

const double dt = 0.001;

const double omega = 2.0;

const int freeDOF = (int)(mass.size1());

const int totalDOF = (int)(msm.size1());

AlphaDynamics sim(alpha,beta,gamma,dt);

sim.setDOF(freeDOF);

sim.setMatrices(mass, ktt, damper);

CU-NEES-06-03 CU-Boulder Desktop Fast Hybrid Test

Draft8.2 Validation Case 2 10

8.2 Validation Case 2

OpenSEES construction:

#

modified 8-02-2006

#

Test Case #2: Single bay frame

#

model BasicBuilder -ndm 2 -ndf 3

node 1 0 0

node 2 0 156.0

node 3 360 156

node 4 360 0

fix 1 1 1 1

fix 4 1 1 1

geomTransf Linear 1

set pdelta off

fields are ID, stiffness, tangent stiffness

uniaxialMaterial Elastic 1001 29000 0.0

fields are id, node1, node2, A, E, Izz, ?

element elasticBeamColumn 1 1 2 75.6 29000 3400 1

element elasticBeamColumn 2 2 3 34.7 29000 5900 1

element elasticBeamColumn 3 3 4 75.6 29000 3400 1

element truss 4 1 3 10 1001

mass 2 0.1 0.1 0.1

mass 3 0.1 0.1 0.1

system UmfPack

constraints Plain

algorithm Linear

numberer RCM

integrator Newmark 0.5 0.25 0.5 0.0 0.0 0.0

analysis Transient

time start stop period

CU-NEES-06-03 CU-Boulder Desktop Fast Hybrid Test

Draft8.2 Validation Case 2 11

set SineTimeSeries "Sine 0.0 50.0 3.14159"

set XAmp 1

set YAmp 0

set ZAmp 0

#Apply sine varying force at node 2

pattern Plain 1 $SineTimeSeries {;

load 2 $XAmp $YAmp $ZAmp;

}

recorder Node -file case2node2disp.out -time -node 2 -dof 1 2 3 disp

recorder Node -file case2node3disp.out -time -node 3 -dof 1 2 3 disp

FHT desktop construction:

FENode p1(1,0,0), p2(2,0,156), p3(3, 360,156), p4(4,360,0);

p1.constrainDOF(0);

p1.constrainDOF(1);

p1.constrainDOF(2);

p4.constrainDOF(0);

p4.constrainDOF(1);

p4.constrainDOF(2);

p2.addMass(0,0.1);

p2.addMass(1,0.1);

p2.addMass(2,0.1);

p3.addMass(0,0.1);

p3.addMass(1,0.1);

p3.addMass(2,0.1);

domain.addNode(p1);

domain.addNode(p2);

domain.addNode(p3);

domain.addNode(p4);

FEElement *e1, *e2, *e3, *e4;

e1 = new FE2DFrame(1, 29e3, 75.6, 3400);

e1->setEndpoints(p1.getID(), p2.getID());

domain.addElement(e1);

e2 = new FE2DFrame(2, 29e3, 34.7, 5900);

e2->setEndpoints(p2.getID(), p3.getID());

domain.addElement(e2);

e3 = new FE2DFrame(3, 29e3, 75.6, 3400);

e3->setEndpoints(p3.getID(), p4.getID());

domain.addElement(e3);

e4 = new FE2DTruss(4, 29000, 10);

e4->setEndpoints(p1.getID(), p3.getID());

domain.addElement(e4);

stiffnessmatrix msm,ktt, mass, damper;

CU-NEES-06-03 CU-Boulder Desktop Fast Hybrid Test

Draft8.2 Validation Case 2 12

domain.assembleMatrices(msm, ktt, mass, damper);

// build the dynamics

const double alpha = 0.0;

const double beta = 0.25 * (1-alpha)*(1-alpha);

const double gamma = 0.5 - alpha;

const double dt = 0.001;

const double omega = 2.0;

const int freeDOF = (int)(mass.size1());

const int totalDOF = (int)(msm.size1());

AlphaDynamics sim(alpha,beta,gamma,dt);

sim.setDOF(freeDOF);

sim.setMatrices(mass, ktt, damper);

CU-NEES-06-03 CU-Boulder Desktop Fast Hybrid Test

	1 Introduction
	2 Overview
	3 Hardware Description
	4 Software Description
	5 Comparison and Validation
	5.1 Single Cantilever Problem
	5.2 Braced Single-Bay Problem

	6 Conclusion and Summary
	7 Acknowledgements
	8 Appendix: Validation Case Information
	8.1 Validation Case 1
	8.2 Validation Case 2

